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Introduction

Aims

The aim of this part of the module is to provide an overview of
probability and statistics skills essential for computer scientists.
In particular, by the end of this part you will be able to...

1 Use common statistical techniques, carry out statistical
analysis, and reflect on results.

2 Understand the formulation of simple regression and time
series models and apply them to data and make forecasts.

3 Use a statistical package to analyse data sets, interpret
computer outputs of their analysis, and report on findings.

Assessment

Assignment weight 25% due 03/03/2020.

Closed Book Examination, weight 50%, combined with first
term materials, May 2020.

Kayvan Nejabati Zenouz MATH1180
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Introduction

Topics to be Covered...

1 Review of Statistics and Probability

2 Introduction to Random Variables

3 Discrete and Continuous Random Variables

4 Joint Distribution of Random Variables

5 Pearson’s Correlation and Regression

6 Approximations, Confidence Intervals

7 Introduction to Time Series

Kayvan Nejabati Zenouz MATH1180
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Class Activity with www.menti.com

Please scan the barcode with your phone in order to take part
in the class activity.

https://www.menti.com/dxp9d13ni1

Alternatively, go to www.menti.com on your electronic devices
and enter the access code 94 56 92.

Kayvan Nejabati Zenouz MATH1180
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Programming Package R

The programming language R was developed around 1993 -
it is object orientated and open source.
R has become a powerful tool used by statistician and
data scientists used for

Data analysis and visualisation
Statistical modelling
HTML application development, automated web-browsing.

How to Get R and its GUI

1 Go To www.r-project.org and to install R click on
download R in the first paragraph.

2 Select a server from the list. Download and install R for
your operating system.

3 For GUI go To www.rstudio.com and click on download
RStudio, Select a free version and install.

4 The website www.cran.r-project.org offers useful notes for
programming with R.

Kayvan Nejabati Zenouz MATH1180
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RStudio GUI

R Console

R script
‘cmd/ctrl+enter’ to run

See datasets and variables

Plots and packages

Kayvan Nejabati Zenouz MATH1180
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Suggested Reading List and References

For reading list see Akritas (2014); Shumway and Stoffer (2017);
Devore (2011); Rice (2006).

Akritas, M.
2014. Probability & Statistics with R for Engineers and Scientists.
Pearson.

Devore, J.
2011. Probability and Statistics for Engineering and the Sciences.
Cengage Learning.

Rice, J.
2006. Mathematical Statistics and Data Analysis. Cengage Learning.

Shumway, R. and D. Stoffer
2017. Time Series Analysis and Its Applications: With R Examples,
Springer Texts in Statistics. Springer International Publishing.

Guidance for Success

Attend Lectures, Engage with Tutorials, Ask Questions, Read
Books, Use Online Resources (Google, YouTube, etc...), Keep
Your Work Organised, and Always Ask for Help.

Kayvan Nejabati Zenouz MATH1180



Topic 1
Review of Statistics and Probability

Probability

Statistics

POPULATION SAMPLE

Sample Space S
Event E

Probability of E

P (E) =
|E|
|S|

Conditional probability

P (A | B) =
P (A ∩B)

P (B)

Population Sample

Location µ =
1

N

∑N
i=1 xi x =

1

n

∑n
i=1 xi

Scale σ2 =
1

N

∑N
i=1 (xi − µ)

2
S2 =

1

n− 1

∑n
i=1 (xi − x)

2
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Intended Learning Outcomes

The main objective of this session is to review elementary
concepts in statistics and probability.

By the end of this session you will be able to...

1 Understand the basic applications of statistics and
probability.

2 Learn about population, samples, and sampling techniques.

3 Calculate populations and sample parameters.

4 Produce statistical visualisations.

5 Analyse sample spaces and compute probabilities of events.

6 Learn the rules governing probability of events, conditional
probability, and independent events.

Kayvan Nejabati Zenouz MATH1180
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Introduction

Statistics

Theory of statistics is concerned with collecting, processing,
summarizing, analysing, and interpreting data.

Height of students in a lecture room.

The reason why we require statistics is variability.

Earliest uses of statistical concepts go back to 450 BC.

Probability

Theory of probability is concerned with likelihood of events.

Throw a coin, what is the probability of obtain a head?

Earliest uses of probability date back to Al-Khalil around
8th, and modern theory was developed by Cardano, Fermat,
Pascal, and Laplace after 16th, century.

Comprehending the theory of statistics requires a sound
background in probability.

Kayvan Nejabati Zenouz MATH1180
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Type of Data in Statistics

Exercise 1: Research

Find applications and uses of probability and statistics in science
and industry.

We need to think about what type of data we are dealing with.

Quantitative Data

This is also refereed to as numerical data; it comes as
continuous or discrete.

Qualitative Data

This is also referred to as categorical data; it comes as binary,
nominal, or ordinal.

Example

Quantitative: weight or number of people in a room.

Qualitative: true/false, red/blue/yellow, or good/OK/bad.

Kayvan Nejabati Zenouz MATH1180
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Population and Samples

In many case we are interested in understanding certain
characteristics of a collection of objects/subjects.

The collection of all items of interest in known as the
population.

The variation in characteristic of interest among members of
the same population in known as inherent or intrinsic
variability.

Population is studied through a census, the examination of
all members.

Can be hypothetical or conceptual, in the sense that not
all members are available for examination.

Kayvan Nejabati Zenouz MATH1180
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Methods of Cement Preparation

Example

Comparing two or more methods of cement preparation in
terms of compressive strength.

Not all cement prepared according to the same method had
the same compressive strength.

If the hardness differs among preparations of the same
cement mixture, then what does it mean to compare the
hardness of different cement mixtures?

A more precise statement of the problem would be to
compare the average (or mean) hardness of the different
cement mixtures.

We have two or more populations, one for each type of
cement mixture, and the characteristic under investigation is
compressive strength.

Population is conceptual.

Kayvan Nejabati Zenouz MATH1180
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Samples

Sample Surveys

Constraints on resources, time, money, and availability usually
make a census impractical or infeasible, so sample surveys are
used to obtain information about a large population by
examining only a selected items from the population.

Census:

Aims for complete coverage of the population.
May use too much time/money/effort.
Should provide large numbers even in minority groups.
May be of value to other studies/research projects.

Sample Survey:

Saves money/time/effort.
Can provide a good enough level of accuracy, but involves a
margin of error.
Involves an element of risk.
May produce only small numbers in minority groups.

Kayvan Nejabati Zenouz MATH1180
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Population and Sample Properties

Population-level properties/attributes of characteristic(s)
are called population parameters, e.g., mean, proportion,
variance.

The corresponding sample properties/attributes of
characteristics are called statistics.

A sample statistic provides an estimate for that of the
population.

New samples collected in the same way will produce new
estimates.

These estimates will not, in general, be equal, each being
based on a different collection of values.

This is called sampling variability.

Exercise 2: Research

Find examples of populations and a parameter of interest in
them.

Kayvan Nejabati Zenouz MATH1180
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Statistical Inference

Statistical inference deals with the uncertainties that
arise in extrapolating to the population the information
contained in the sample.

Takes the form of estimation (both point and interval
estimation) of the population parameter(s) of interest.

Testing various hypotheses for the value of the population
parameter(s) of interest.

Finally statistical inference may be used in the problem of
prediction.

Main approaches to statistical inference can be classified
into

Parametric
Robust
Nonparametric
Bayesian

Kayvan Nejabati Zenouz MATH1180
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Sampling Techniques

Sampling theory is concerned with selecting a sample form a
population, so that the statistics produced approximate
population parameters.

Exercise 3: Research

Find sampling techniques and discuss uses/examples.

Includes

Simple Random Sampling

Stratified Sampling

Cluster Sampling

Systematics Sampling

Kayvan Nejabati Zenouz MATH1180
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Simple Random Sampling

Definition (Simple Random Sampling)

A sample of size n is selected from a population and we ensure
that each particular sample of size n has the same probability of
occurrence.

If the total population has size N , we may use a random
number generator to select n samples.

Sampling can be done with or without replacement.

If x is a vector from which we need to take a sample of size
n, without replacement, you can use R code

sample(x, n, replace = FALSE)

The ratio f =
n

N
is called the sampling fraction.

Kayvan Nejabati Zenouz MATH1180
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Basic Statistical Visualisation

Histograms

Dividing the range of the data into consecutive intervals, or bins,
and constructing a box, or vertical bar, above each bin. The
height of each box represents the bin’s frequency, which is the
number of observations that fall in the bin.

Scatterplots

Useful for exploring the relationship between two and three
variables, e.g., relationship between height and weight. Also
scatter matrix of scatterplots for all pairs of variables in a data
set can be used in certain situations.

Boxplots

Boxplots are a standardized way of displaying the distribution of
data based on a five number summary: minimum, first quartile
(Q1), median, third quartile (Q3), and maximum.

Kayvan Nejabati Zenouz MATH1180
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Populations/Samples Parameters

We are often interested in quantifiable aspects of a
population known as parameters of statistical population.

Common parameters are proportion, average, and
variance.

Consider a finite population of size N from which we may
select a sample of size n.

As population have true parameters, which may or may not
be known in general.

Sample parameters provide an estimate for population
parameters.

Kayvan Nejabati Zenouz MATH1180
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Populations/Samples Proportion

Proportion

If a variable in the population of interest has categorical nature,
e.g., types Defective or Non-Defective, we are may be interested
in the proportion of items in each category.

If Ni items are in category i, then the Population
Proportion of category i is

pi =
Ni

N
.

If ni items are in category i, then the Sample Proportion
of category i is

p̂i =
ni
n
.

We say p̂i is an estimate for pi.

Kayvan Nejabati Zenouz MATH1180
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Proportion

Exercise 4: Proportions

In a bag with 1000 sweets there are 606 blue, 284 green, and 110
red. Find the population proportions for each colour. In a simple
random sample of size 100 we find there are 79 blue, 12 green,
and 9 red. Find the sample proportion for each colour.

Kayvan Nejabati Zenouz MATH1180
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Population and Sample Average

Average or Mean

Suppose we study a numerical property of a population and let
x1, x2, ..., xN denote the values for the property of interest for
each item. Then the population average or mean is

µ =
1

N

N∑
i=1

xi.

If a sample of size n is selected with values x1, x2, ..., xn, then

x =
1

n

n∑
i=1

xi

is the sample mean. We say x is an estimate for µ.

Mean or average value naturally shows us the ”central” value of
a set of values, it is a known as a location parameter.

Kayvan Nejabati Zenouz MATH1180
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Population and Sample Variance

Variance and standard deviation quantify the intrinsic
variability of the values.

Variance and Standard Deviation

Suppose we study a numerical property of a population and let
x1, x2, ..., xN denote the values for the property of interest for
each item. Then the population variance is

σ2 =
1

N

N∑
i=1

(xi − µ)2 ,

where σ is known as the standard deviation. If a sample of
size n is selected with values x1, x2, ..., xn, then

S2 =
1

n− 1

n∑
i=1

(xi − x)2

is the (unbiased) sample variance. We say S is an estimate for
σ.

Kayvan Nejabati Zenouz MATH1180



28

Exercise 5:

The length of time between documents being send to a network
printer has been measurement for a day in minutes with results
below.

60, 120, 20, 30, 40, 200, 10, 20, 50

1 Calculate the population mean and variance for the items
above.

2 Sample the population by taking items number 1, 3, 5, 7, 9,
and calculate the sample mean and variance.

3 What proportion of population has length of time less than
20?

4 What proportion of the sample has length of time less than
20?

Kayvan Nejabati Zenouz MATH1180
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Role of Probability

Statistics uses sample-level information to infer/estimate
properties of the population.

Probability

Statistics

POPULATION SAMPLE

Probability Theory assumes that all relevant information
about the population is known and seeks to assess the
chances that a sample will possess certain properties of
interest.

Kayvan Nejabati Zenouz MATH1180
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Probability Examples and Motivation

Example

What are the chances of 4 heads, or of 10 heads, or of 18
heads in 20 flips of a fair coin? This can be rephrased in
terms of a sample of size 20 taken with replacement from
the population {Head, Tail}.
If 5% of electrical components have a certain defect, what
are the chances that a batch of 500 such components will
contain less than 20 defective ones?

Statistical Proof

Statistical proof is used for proving a population has a certain
property using a sample and works as follows.

1 Assume the population does not have the property.

2 Calculate the chances of obtaining the sample we observed.

3 If the chances are small enough, say less than 5%, conclude
that the assumption in (1) was wrong.

Kayvan Nejabati Zenouz MATH1180
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Introduction to Probability

Probability quantifies likelihood of certain events, which are
related to sampling experiments.

Example

Role a fair die twice and record the number each time.

What is the set of all possible outcomes?

How many of the outcomes include
1 sum of two numbers equalling 10?
2 two sixes?
3 sum of two numbers being 9 and one number 3?
4 sum of two numbers being 9 or one number 3?

Kayvan Nejabati Zenouz MATH1180
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Sample Spaces

Definition (Sample Space)

The set of all possible outcomes of an experiment is called the
sample space of the experiment and will be denoted by S.

Example

Toss a fair coin: S = {H,T}.
Role a die record number: S = {1, 2, 3, 4, 5, 6}.
A student’s satisfaction about a module is recorded on a
scale from 1 to 10: S = {1, 2, 3, 4, ..., 10}.

Remark 1: Sample Space and Statistical Population

The statistical population for a sampling experiment is the
collection of all measurements, but the sample space is smaller
since each of the possible outcomes is listed only once.

Kayvan Nejabati Zenouz MATH1180
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Events

Definition (Event)

A subset of a sample space of S for an experiments is called an
event. If an outcome x is in A we write x ∈ A.

Example

Throw a die, the events that the number shown is even
A = {2, 4, 6}.

Exercise 6: Samples Spaces and Events

1 Write the sample space for the following.
1 Tossing a coin twice.
2 The length of time between successive earthquakes in a

particular region in hours.

2 In tossing a coin twice write the event that we find at least
one head.

3 The event that length of time between successive
earthquakes in a particular region is longer than 2 hours.

Kayvan Nejabati Zenouz MATH1180
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Set Operations for Events

Events are sets, so the usual set operations are relevant for
probability theory. Venn diagrams are used to illustrate basic
set operations.

A B

A ∩BS

A B

S A ∪B

A B

S A−B

S Ac

A

The set Ac is the complement of A is S, i.e., S −A.
Kayvan Nejabati Zenouz MATH1180
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More on Events

Two events A and B are called disjoint of mutually
exclusive if they have no outcomes in common, we write

A ∩B = ∅.
We say an event A is a subset of another event B if all
outcomes of A are also outcomes of B.
The following events laws hold for events A, B, and C.

Commutative Laws: A ∪B = B ∪A, A ∩B = B ∩A.
Associative Laws:

(A ∪B) ∪ C = A ∪ (B ∪ C), (A ∩B) ∩ C = A ∩ (B ∩ C).

Distributive Laws:

(A∪B)∩C = (A∩C)∪(B∩C), (A∩B)∪C = (A∪C)∩(B∪C).

De Morgan’s Laws:

(A ∪B)c = Ac ∩Bc, (A ∩B)c = Ac ∪Bc.
Exercise 7: Events

Draw Venn diagrams of the items above.

Kayvan Nejabati Zenouz MATH1180
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Probabilities of Events

We are interested in assessing the likelihood, or chance, of
occurrence of an outcome or, more generally, of an event E
from sample space S.

The probability of E, denoted by P (E) ∈ [0, 1] is used to
quantify the likelihood of occurrence of E.

In general if Nn(E) denotes the number of occurrences of E
is n repetitions of the experiment, then P (E) may be

interpreted as lim
x→∞

Nn(E)

n
.

Kayvan Nejabati Zenouz MATH1180
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Equally Likely Outcomes

Definition (Probability of Equally Likely Outcomes)

If the sample space S of an experiment consists of N = |S|
outcomes that are equally likely to occur, then the probability of
each outcome is 1/N . If N(E) = |E| denotes the number of
outcomes constituting the event E, then the probability of E is

P (E) =
N(E)

N
.

Example

In rolling a die the probability of obtain number 1 is 1/6,
and the probability of obtaining an odd number is 3/6.

In tossing a coin twice the probability of obtaining at least
one head is

P (as least one head) =
|{HT, TH,HH}|
|{HT, TH,HH, TT}|

=
3

4
.

Kayvan Nejabati Zenouz MATH1180
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Exercise 8: Probability

Role a fair die twice and record the number each time. What is
the probability of

1 sum of two numbers equalling 10?

2 two sixes?

3 sum of two numbers being 9 and one number 3?

4 sum of two numbers being 9 or one number 3?

Kayvan Nejabati Zenouz MATH1180



39

Counting Techniques

Application of Counting

In determining the probability of an event E in many case we
need use a counting procedure to determine the size of sample
space S as well as size of E.

Example

How many outcomes there are for choosing a shirt and a
coat out of 3 shirts and 2 coats?

Two cards will be selected from a deck of 52 cards.

How many outcomes are there if the first card will be given
to player 1 and the second card will be given to player 2?
How many outcomes are there if both cards will be given to
player 1?

Kayvan Nejabati Zenouz MATH1180
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Fundamental Principle of Counting

Stage Counting

If a task can be completed in two stages, if stage 1 has n1
outcomes, and if stage 2 has n2 outcomes, regardless of the
outcome in stage 1, then the task has n1n2 outcomes.

Example

Choosing a shirt and a coat out of 3 shirts and 2 coats we have
2× 3 = 6 outcomes.

Remark 2: k Stage Counting

If a task can be completed in k stages and stage i has ni
outcomes, regardless of the outcomes of the previous stages, then
the task has n1n2 · · ·nk outcomes.

Exercise 9: Counting

1 How many outcomes there are for throwing a die twice?

2 How many outcomes to form a binary sequence of length 10?

Kayvan Nejabati Zenouz MATH1180
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Sampling Without Replacements

If the k stages of a task involve sampling one unit each, without
replacement, from the same group of n units, then the outcomes
can be ordered if each stage is numbered, and unordered
otherwise.

In the ordered case the outcomes are called permutation of
k units out of n, denoted by Pk,n, and given by

Pk,n = n(n− 1) · · · (n− k + 1) =
n!

(n− k)!
.

In R you can write factorial(n)/factorial(n-k).

In the unordered case the outcomes are called combination
of k units out of n, denoted by Ck,n, and given by

Ck,n =

(
n

k

)
=
n(n− 1) · · · (n− k + 1)

k(k − 1) · · · × 2× 1
=

n!

(n− k)!k!
=
Pk,n
Pk,k

.

In R you can write choose(n, k).

Kayvan Nejabati Zenouz MATH1180
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Axioms of Probability

Exercise 10: Combinations Probability

In drawing three cards out of a set of 52 what is the probability
of getting two aces and a king?

Definition (Axioms of Probability)

For an experiment with sample space S, probability is a function
that assigns a number P (E) to any event E such that

Axiom 1: 0 ≤ P (E) ≤ 1

Axiom 2: P (S) = 1

Axiom 3: For any sequence of disjoint events E1, E2, ..., we
have

P

( ∞⋃
i=1

Ei

)
=

∞∑
i=1

P (Ei).

Kayvan Nejabati Zenouz MATH1180
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Remark 3: Consequences of Axioms of Probability

It follows from the axioms of probability that

1 P (∅) = 0

2 P (Ac) = 1− P (A)

3 If A ⊆ B, then P (A) ≤ P (B)

4 P (A ∪B) = P (A) + P (B)− P (A ∩B)

5 P (E) =
∑

x∈E P ({x})

Exercise 11: Consequences of Axioms of Probability

Find a proof, using the axioms, for each of the items above.

Kayvan Nejabati Zenouz MATH1180
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Conditional Probability

Conditional probability is concerned with probability of an
event given another event has already taken place.

For example throw a dice, probability of getting 2 is 1/6.
Now given we already know the number is even, probability
of getting 2 is 1/3.

For two events A,B, the conditional probability that B
occurs given that A occurred and is denoted by P (B | A).

If A has already occurred, then our sample space is no
longer S, but A, in this can we are concerned with A ∩B.

A B

A ∩BS Therefore we have

P (B | A) =
P (A ∩B)

P (A)

for P (A) 6= 0.

Kayvan Nejabati Zenouz MATH1180
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Total Law of Probability, Bayes’ Theorem

Note using the conditional probability rule for two events A and
B we can write

P (A ∩B) = P (B | A)P (A).

This leads to two useful consequences.

Total Law of Probability

Suppose A1, ..., Ak are disjoint sets whose union is the sample
space S, and B any event. Then we can express P (B) as

P (B) = P (A1)P (B | A1) + · · ·+ P (Ak)P (B | Ak).

Theorem (Bayes)

Suppose A1, ..., Ak are disjoint sets whose union is the sample
space S, and B any event. Then for any j = 1, ..., k,

P (Aj | B) =
P (Aj ∩B)

P (B)
=
P (Aj)P (B | Aj)∑k

i=1 P (B | Ai)
.
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Independent Events

In some cases for two events A and B, the knowledge that B
has occurred does not effect the chance that A may occur
that is P (B | A) = P (B).

For example if role a die twice, information about the first
die has no effect on what the second would be.

Definition (Independence)

Two events A and B are called independent if

P (A ∩B) = P (A)P (B).

Otherwise the events are called dependent.

Exercise 12: Combinations Probability

It is known that 30% of a washing machines require service while
under warranty, whereas only 10% of dryers need such service. If
someone purchases both a washer and a dryer, what is the
probability that both machines will need service?
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Summary: What we learnt...

Statistics and Probability

History and applications
Data Types and Visualisations

Numeric, Categorical, Histograms
Populations, Sampling, Parameter

Proportion, Average, Variance
Sample Spaces, Events, Counting

Combinations, Permutations
Conditional Probability

Bayes’ Theorem, Independence
Next Time

Random Variables
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Topic 2
Introduction to Random Variables

Random Variable X : S −→ R.
Probability Mass Function pX(x) = P (X = x).
Probability Density Function fX(x)

P (a ≤ X ≤ b) =

∫ b

a
fX(x)dx.

Cumulative Distribution Function FX(x) = P (X ≤ x).
Expected value

E(X) = µX =
∑
x∈SX

xpX(x), E(X) = µX =

∫ ∞
−∞

xfX(x)dx.

Variance

σ2X =
∑
x∈SX

(x− µX)2 pX(x), σ2X =

∫ ∞
−∞

(x− µX)2 fX(x)dx.

48



49

Lecture Contents

1 Introduction
Module Aims and
Assessment
Topics to be Covered
Programming Package R
RStudio GUI
Reading List and
References

2 Topic 1: Review of
Statistics and Probability

Population and Samples
Sampling Techniques
Statistical Visualisation
Populations/Samples
Parameters
Sample Spaces and Events
Probability of Events
Counting Techniques
Axioms of Probability
Conditional Probability
Total Law of Probability
and Bayes’ Theorem
Independent Events

3 Topic 2: Introduction to
Random Variables

Random Variables
Probability Mass
Function

Cumulative Distribution
Function
Probability Density
Function
Expected Value
Variance and Standard
Deviation

4 Topic 3: Discrete and
Continuous Random
Variables

The Bernoulli and
Binomial Distributions
The Geometric
Distribution
The Poisson Distribution
The Exponential
Distribution
The Normal Distribution

5 Topic 4: Joint Distribution
of Random Variables

Joint Probability
Distribution
Conditional Probability
Functions
Conditional Expectation:
Regression Function
Independence
Functions of Random
Variables
Variance and Covariance

6 Topic 5: Pearson’s
Correlation and Regression

Pearson’s Correlation
Coefficient
Regression Models
Model Checking
Model Fitting with Least
Square Method

7 Topic 6: Approximations
and Confidence Intervals

The Law of Large
Numbers
The Central Limit
Theorem
Confidence Intervals

8 Topic 7: Introduction to
Time Series

Times Series Data and
Visualisation
Definition and Examples
Time Series
Decomposition
Lags and Differences
Autocorrelation and
Autocovariance
Stationary Time Series
Trend and Seasonality
Autoregressive Moving
Average
Forecasting
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Intended Learning Outcomes

By the end of this session you will be able to...

1 Understand different types of random variables.

2 Find Probability Mass Functions and Cumulative
Distribution Functions and Probability Density Functions
for random variables.

3 Analyse properties of PMF, CDF, PDF.

4 Calculate expectation and variance of random variables.
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Introduction

Last time we looked at populations, samples, and their
characteristics.

Characteristic of interest can be quantitative, or
qualitative, though both can be represented by numbers.

A characteristic of any type represented by a number is
called a variable.

Categorical variables are a particular kind of discrete
variables.

Quantitative variables expressing measurements on a
continuous scale, such as length, are examples of
continuous variables.

When a population unit is randomly sampled from a
population, its value is not known a priori.

A random variable, X, denotes the value of the variable
of a population unit that will be sampled.
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Random Variables: Examples

Example

1 A coin in thrown three times, the sample space is

S = {HHH,HHT,HTT,HTH, TTT, TTH, THH, THT}.

One random variables X defined on S is the total number of
heads, so for example

X(HHH) = 3, X(HHT ) = 2, ..., X(TTT ) = 0.

2 Consider the experiment where an electrical product is
tested until failure, and let X denote the time to failure.
The sample space of this experiment, or of X, is S = [0,∞).
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Random Variables

Definition (Random Variable)

A random variable is a rule that assigns to each element of S a
real number in R. More formally, a random variable is a function

X : S −→ R.

If X can take on only a finite, or at most a countably infinite
number of values, then X is known as a discrete random
variable, otherwise X is a continuous random variable.

Example

In a sampling experiment where observations X1, X2, ..., Xn are
collected from a population, the observation X1, X2, ..., Xn,
together with sample mean X, the sample variance S2, and a
sample proportion p̂ are random variables.
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Probability Mass Functions PMF

Given a random variable X, then we may say what would be
the probability of X taking a value is a subset A ⊆ R.

We write that as

P (X ∈ A) = P ({a ∈ S | X(a) ∈ A}) .

For example, if X is number of heads on throwing a coin
three times, then

P (X = 3) =
1

8
and P (X ∈ {1, 2}) =

6

8
.

Definition (Probability Mass Function)

Probability mass function for a discrete random variable X is the
probability pX(x) = P (X = x).
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Cumulative Distribution Function CDF

Definition (Cumulative Distribution Function)

The cumulative distribution function, of a random variable X
gives the probability of events of the form X ≤ x, for x ∈ R,
which is written as

FX(x) = P (X ≤ x).

Kayvan Nejabati Zenouz MATH1180



56

Example

Example

A coin in thrown three times. Let be X be the total number of
heads. Find

1 Probability mass function pX(x).

2 Cumulative distribution function FX(x).

Note X is a discrete random variable and the sample space is

S = {HHH,HHT,HTT,HTH, TTT, TTH, THH, THT}.
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Example Cont I

For the probability mass function pX(x). For the values of X
which 0, 1, 2, 3 and we have

pX(0) = P (X = 0) =
|{TTT}|
|S|

=
1

8

pX(1) = P (X = 1) =
|{HTT, THT, TTH}|

|S|
=

3

8

pX(2) = P (X = 2) =
|{HHT,HTH, THH}|

|S|
=

3

8

pX(3) = P (X = 3) =
|{HHH}|
|S|

=
1

8
,

pX(x) = P (X = x) = 0 if x 6= 0, 1, 2, 3.
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Example Cont II

For the cumulative distribution function FX(x), we have

FX(x) = P (X ≤ x) = 0 if x < 0.

FX(0) = P (X ≤ 0) =
|{TTT}|
|S|

=
1

8

FX(1) = P (X ≤ 1) =
|{TTT,HTT, THT, TTH}|

|S|
=

4

8

FX(2) = P (X ≤ 2) =

|{TTT,HTT, THT, TTH,HHT,HTH, THH}|
|S|

=
7

8

FX(3) = P (X ≤ 3) =

|{HHH,TTT,HTT, THT, TTH,HHT,HTH, THH}|
|S|

=
8

8
,

FX(x) = P (X ≤ x) = 1 if x ≥ 3.
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Example Cont III

We end up with the tables

x 0 1 2 3

PX(x)
1

8

3

8

3

8

1

8

and

x x < 0 0 1 2 3 x > 3

FX(x) 0
1

8

4

8

7

8

8

8
1
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Properties of Cumulative Distribution Function

The cumulative distribution function F (x) of a random variable
X satisfies the following properties.

1 It is non-decreasing: If a ≤ b then F (a) ≤ F (b).

2 We have F (−∞) = 0 and F (∞) = 1.

3 If a < b, then P (a < X ≤ b) = F (b)− F (a).

Exercise 1: Cumulative distribution function

Find a proof for each of the items above.
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Connection between the PMF and the CDF

Let x1, x2, .... denote the possible values of the discrete random
variable X arranged in increasing order. Then

1 The cumulative distribution function F is a step function,
with jumps occurring at values x ∈ S. The size of each jump
at x is p(x) = P (X = x).

2 The CDF can be obtained by

F (x) =
∑
xi≤x

p(xi).

3 The PMF can be obtained from CDF as

p(x1) = F (x1), and p(xi) = F (xi)− F (xi−1) for i = 2, 3, ...

4 We have
P (a < X ≤ b) =

∑
a<xi≤b

p(xi),

and in terms of CDF we have

P (a < X ≤ b) = F (b)− F (a).
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Random Variables: More Examples

Definition (Bernoulli Distribution)

A Bernoulli random variable X takes on only two values: 0 and
1, with probabilities 1− p and p, respectively. Therefore,
P (X = 0) = 1− p and P (X = 1) = p and we write X ∼ Ber(p)

Definition (Uniform Distribution)

A uniform random variable on the interval [0, 1] choosing a
number at random between 0 and 1 and we have

P (X in the interval of length l) = l.

We write X ∼ Uni(0, 1) and the CDF is given by

FX(x) = P (X ≤ x) =


0 x < 0

x 0 ≤ x ≤ 1

1 x > 1
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Probability Density Function PDF

A continuous random variable cannot have a PMF, since
P (X = x) = 0 for all x.
In addition to the CDF, the probability distribution of a
continuous random variable can be described in terms of
its probability density function.

Definition (Probability Density Function)

The probability density function of a continuous random variable
X is a nonnegative function fX , thus, fX(x) ≥ 0, for all x, with
the property that P (a < X < b) equals the area under it and
above the interval [a, b]. Thus

P (a < X < b) =

∫ b

a
fX(x)dx.

Note the definition above implies that

P (−∞ < X <∞) =

∫ ∞
−∞

fX(x)dx = 1.
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Example and Properties

If X ∼ U(0, 1), then we have

fX(x) =


0 x < 0

1 0 ≤ x ≤ 1

0 x > 1

Properties PDF

If X is a continuous random variable with PDF f , the we have

1 P (a < X < b) = P (a ≤ X ≤ b) = F (b)− F (a).

2 CDF for X can be obtained by

F (x) =

∫ x

−∞
f(y)dy.

3 PDF can be obtained by

f(x) = F ′(x) =
d

dx
F (X).
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Example

If the life time T , measured in hours, of a randomly selected
electrical component has PDF

fT (t) =

{
0 t < 0

0.005e−0.005t t ≥ 0

1 Find the probability that the component will last between
300 and 600 hours.

2 Find the CDF of F (t).

300 600
0

1

2

3

4

5
·10−3

f T
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Solution

1 The probability is

P (300 ≤ t ≤ 600) =

∫ 600

300
0.005e−0.005tdt

=
[
−e−0.005t

]600
300

= −e−0.005×600 + e−0.005×300 = 0.1733.

2 We have F (t) = 0 for t ≤ 0, and

F (t) =

∫ t

−∞
f(s)ds∫ t

0
0.005e−0.005sds =

[
−e−0.005s

]t
0

= −e−0.005×t + e−0.005×0

= 1− e−0.005t for t > 0.

300 600
0

0.2
0.4
0.6
0.8

F
T
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Exercise 2: CDF for Random Variables

1 The PMF of a random variable X is
x 1 2 3

pX(x) 0.1 0.7 0.2

Find the CDF of FX(x).

2 A random variable Y is said to have the uniform in [A,B]
distribution, denoted by Y ∼ U(A,B), if its PDF is

fY (y) =


0 y < A

1

B −A
A ≤ y ≤ B

0 y > B

Find the CDF of FY (y).

Kayvan Nejabati Zenouz MATH1180



68

Parameters of Distributions

The graph of a PMF or PDF for a random variable X tell us
about the distribution of X

For example, if X ∼ Uni(0, 1), then we have

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Uniform Distribution PDF

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

CDF for Uniform Distribution

Parameters of random variables are used to create
summaries of these distributions.

The parameters we will consider are the mean value, or
expected value, the variance, and standard deviation.
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Expected Value I

Definition (Discrete Random Variable)

Let X be a discrete random variable with sample space SX , and
let p(x) = P (X = x) denote its probability mass function. Then,
the expected value E(X) or µX is defined as

E(X) = µX =
∑
x∈SX

xp(x).

This E(X) indicates the values near to which we are ”most likely
to obtain”.

Example

Toss a coin twice. Let X be the number of heads. Then we have

x 0 1 2

pX(x) 0.25 0.5 0.25

E(X) = 0× 0.25 + 1× 0.5 + 2× 0.25 = 1.
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Exercise and Example

Exercise 3: Expectation

Find E(X), where the sample space of X and pX(x) is given by

x 0 1 2 3

pX(x)
1

8

3

8

3

8

1

8

Example

Suppose X is obtained by simple random sampling from any
finite population. Let ν1, ..., νN be the values for underlying
statistical population, and SX = {x1, ..., xm} be the sample
space. Suppose nj is the number of times xj is repeated in the

population, so P (x = xj) =
nj
N

. The we have

µX =
1

N

N∑
i=1

νi =
m∑
j=1

xjP (X = xj).
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Expected Value II

Definition (Continuous Random Variable)

Let X be a continuous random variable with sample space SX ,
and let f(x) denote the probability density. Then, the expected
value E(X) or µX is defined as

E(X) = µX =

∫ ∞
−∞

xf(x)dx.

Example

If the PDf of X is given by f(x) = 2x for 0 ≤ x ≤ 1 and 0
otherwise. Then we have

E(X) =

∫ ∞
−∞

xf(x)dx =

∫ 1

0
x× 2xdx =

2

3
.

Exercise 4: Uniform Distribution

Find E(X) for X ∼ Uni(0, 1).
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Expectation of Functions

Sometimes a random variable is a function of another: say X is a
random variable and Y = h(X) for some function h.

Expectation of Functions

Let X be a random variable, h a function on SX , and Y = h(X).

If X is a discrete random variable we have

E(Y ) = E(h(X)) =
∑
x∈SX

h(x)pX(x).

If X is a continuous random variable we have

E(Y ) = E(h(X)) =

∫ ∞
−∞

h(x)fX(x).

If Y = h(X) = aX + b, for some constants a, b, then

E(Y ) = aE(X) + b.
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Example

A book store purchases three copies of a book at £6.00 each and
sells them for £12.00 each. Unsold copies are returned for £2.00
each. Let X = {number of copies sold} and Y = {net revenue}.
If the PMF of X is

x 0 1 2 3

pX(x) 0.1 0.2 0.2 0.5

Find E(X) and E(Y ).
Solution: For expected value of X we have

E(X) = 0× 0.1 + 1× 0.2 + 2× 0.2 + 3× 0.5 = 2.1.

Now Y = 12X + 2(3−X)− 18 = 10X − 12, so

E(Y ) = 10E(X)− 12 = 10× 2.1− 12 = 9.
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Variance and Standard Deviation

Variance

Given a random variable X, the variance of X is defined as

Var(X) = σ2X = E
[
(X − µX)2

]
.

σX is known standard deviation. In particular if X is discrete,
then we have

σ2X =
∑
x∈SX

(x− µX)2 p(x)

and if X is continuous we have

σ2X =

∫ ∞
−∞

(x− µX)2 f(x)dx.

The shortcut formula for varianvce of X is

E
[
(X − µX)2

]
= E

(
X2
)
− µ2X .
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Example and Exercises

Example

Toss a coin twice. Let X be the number of heads. Then we have

x 0 1 2

pX(x) 0.25 0.5 0.25

Recall we had E(X) = 1, now we have

Var(X) = (0− 1)2 × 0.25 + (1− 1)2 × 0.5 + (2− 1)2 × 0.25 = 0.5.

Exercise 5: Variance

1 Find Var(X), where the sample space of X and pX(x) is
given by

x 0 1 2 3

pX(x)
1

8

3

8

3

8

1

8
2 Find Var(X) for X ∼ Uni(0, 1).
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Properties of Variance

Variance of Linear Transformation

Let X be a random variable and Y = h(X) = aX + b, for some
constants a, b, then

Var(Y ) = a2Var(X).

Kayvan Nejabati Zenouz MATH1180



77

Example

A book store purchases three copies of a book at £6.00 each and
sells them for £12.00 each. Unsold copies are returned for £2.00
each. Let X = {number of copies sold} and Y = {net revenue}.
If the PMF of X is

x 0 1 2 3

pX(x) 0.1 0.2 0.2 0.5

Find Var(X) and Var(Y ).
Solution: For variance of X we have

Var(X) = 0×0.1+12×0.2+22×0.2+32×0.5−2.12 = 5.5−4.41 = 1.09.

Now Y = 12X + 2(3−X)− 18 = 10X − 12, so

Var(Y ) = 100Var(X) = 100× 1.09 = 109.
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Exercise 5: Uniform Distribution

Let Y ∼ Uni(A,B). Find E(Y ) and Var(Y ) using the fact that
Y = (B −A)X +A for X ∼ Uni(0, 1).
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Summary: This session we learnt...

Random Variable

Discrete, Continuous
Probability Mass Function

Discrete Random Variable
Cumulative Distribution Function

Discrete, Continuous
Connection between PMF and CDF

Discrete Random Variable
Probability Density Function

Continuous Random Variable
Parameters of Distributions

Expectation and Variance
Next Time

Continuous and Discrete Models
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Topic 3
Discrete and Continuous Random Variables

0 10 20 30 40

Binomial Distribution

n = 40, p = 0.2
n = 40, p = 0.5

X ∼ Bin(n, p)

pX(x) =

(
n

x

)
px (1− p)n−x

2.1%

13.6%

34.1%

2.1%

13.6%

34.1%

N(µ, σ2)

−3σ −2σ −σ µ σ 2σ 3σ

Normal Distribution

X ∼ N(µ, σ)

fX(x) =
1

2πσ2
e−

(x−µ)2

2σ2
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Cumulative Distribution
Function
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Variance and Standard
Deviation
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Distribution
The Poisson Distribution
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Intended Learning Outcomes

By the end of this session you will be able to...

1 Understand different types random variable including
discrete and continuous.

2 Learn about their uses in real life examples.
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The Bernoulli Distribution

Definition (The Bernoulli Distribution)

A Bernoulli trial or experiment is one whose outcome can be
classified as either a success or a failure. The Bernoulli random
variable X takes the value 1 if the outcome is a success, and the
value 0 if it is a failure.

Example

The prototypical Bernoulli experiment is a flip of a coin,
with heads and tails being success and failure, respectively.

In an experiment where a product is selected from the
production line, the Bernoulli random variable X takes the
value 1 or 0 as the product is defective (success) or not
(failure)
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The Bernoulli Distribution PMF, CDF, and Parameters

If the probability of success is p and that of failure is 1− p,
the PMF and CDF of X are

x 0 1

p(x) 1− p p

F (x) 1− p 1

The parameters of the distribution are given by

µX = p, σ2X = (1− p)p.

Exercise 1: Bernoulli Distribution

The probability that an electronic product will last more than
5500 time units is 0.1. Let X take the value 1 if a randomly
selected product lasts more than 5500 time units and the value 0
otherwise. Find the mean value and variance of X.

Kayvan Nejabati Zenouz MATH1180



85

The Binomial Distribution

Definition (The Binomial Distribution)

Suppose n Bernoulli experiments, each having probability of
success equal to p, are performed independently. Taken together,
the n independent Bernoulli experiments constitute a binomial
experiment. The binomial random variable Y is the total number
of successes in the n Bernoulli trials.

Example

The prototypical binomial experiment consists of n flips of a
coin, with the binomial random variable Y being the total
number of heads.
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The Binomial Distribution PMF and Parameters

If Xi denotes the Bernoulli random variable associated with
the ith Bernoulli trial, that is Xi = 1 if ith experiment
results in success and 0 otherwise, then the binomial random
variable Y equals

Y =

n∑
i=1

Xi.

The sample space of Y is S = {0, 1, ..., n}. The probability
distribution is controlled the number of trials n and the
probability of success in each trials, we write

Y ∼ Bin(n, p).

The probability mass function is given by

P (Y = y) =

(
n

y

)
py(1− p)n−y y = 0, 1, ..., n.

We have E(Y ) = np and Var(Y ) = n(1− p)p.
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Example

In a medical trial the rate of failure of a particular experiment is
know to be 30%. Let Y denote the number of success in 15
experiments. Find the following.

1 The probability that we have exactly 5 successes.

2 The probability P (2 ≤ Y ≤ 4).

3 E(X) and Var(X).
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The Geometric Distribution

Definition (The Geometric Distribution)

A geometric experiment is one where independent Bernoulli
trials, each with the same probability p of success, are performed
until the occurrence of the first success. The Geo(p) random
variable X is the total number of trials up to and including the
first success in such a geometric experiment.

Example

The prototypical engineering application of the geometric
distribution is that of quality control at the production level:
Product items are being inspected as they come off the
production line until the first one with a certain defect is found.
The geometric random variable X is the total number of items
inspected.
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The Geometric Distribution PMF and Parameters

The sample space of a geometric random variable X is
SX = {1, 2, 3, ...}.
The PMF P (X = x) gives the probability when x products
tested, the first x− 1 failed and last one succeeded, hence

P (X = x) = (1− p)x−1p, for x = 1, 2, 3, ...

The CDF is given by

F (x) = 1− (1− p)x, for x = 1, 2, 3, ...

The expectation and variance is given by

E(X) =
1

p
, Var(X) =

1− p
p2

.
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Example

In a production line the rate of failure of a particular product is
know to be 30%. Let Y denote the number of product tested
until first success. Find the following.

1 The probability that fifth test is a success.

2 The probability P (2 ≤ Y ≤ 4).

3 E(X) and Var(X).

Kayvan Nejabati Zenouz MATH1180



91

The Poisson Distribution

Definition (The Poisson Distribution)

The Poisson distribution is used to model the probability that a
number of certain events occur in a specified period of time. The
type of events whose occurrences are thus modelled must occur
at random and at a rate that does not change with time. The
random variable X is said to be Poisson with parameter λ,
denoted by X ∼ Poi(λ).

Example

The prototypical engineering application of the geometric
distribution is the number of cars arrived at the car park. The
Poisson distribution can also be used for the number occurrences
of events occurring in other specified intervals such as distance,
area, or volume.
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The Poisson Distribution PMF and Parameters

The sample space of a Poisson random variable X is
SX = {0, 1, 2, 3, ...}.
The PMF P (X = x) is given by

P (X = x) = e−λ
λx

x!
, for x = 0, 2, 3, ...

The expectation and variance is given by

E(X) = λ, Var(X) = λ.

Example

Let X ∼ Poi(4). Find P (X = 2) and P (1 ≤ X ≤ 3).
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Poisson Approximation

A binomial experiment where the number of trials n is large
(n ≥ 100), the probability p of success in each trial is small
(p ≤ 0.01), and the product np is not large (np ≤ 20), can be
modelled (to a good approximation) by a Poisson distribution
with λ = np.

Example

Due to a serious defect, a car manufacturer issues a recall of
n = 10, 000 cars. Let p = 0.0005 be the probability that a car has
the defect, and let Y be the number of defective cars. Find
P (Y ≥ 10) (b) P (Y = 0).
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The Exponential Distribution

Definition (The Poisson Distribution)

A random variable X is said to be an exponential, or to have the
exponential distribution with parameter λ, denoted by
X ∼ Exp(λ), if its PDF is

f(x) =

{
λe−λx x ≥ 0

0 x < 0

We have F (x) = 1− e−λx for x ≥ 0 and F (x) = 0 otherwise.

Also E(X) =
1

λ
and Var(X) =

1

λ2
.

Example

The exponential distribution is used in reliability theory as the
simplest model for the life time of equipment.
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Example

Suppose the useful life time, in years, of a personal computer
(PC) is exponentially distributed with parameter λ = 0.25. A
student entering a four-year undergraduate program inherits a
two-year-old PC from his sister who just graduated. Find the
probability the useful life time of the PC the student inherited
will last at least until the student graduates.
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The Normal Distribution

Definition (The Normal Distribution)

A random variable is said to have the standard normal
distribution if its PDF and CDF, which are denoted (universally)
by φ and Φ, respectively, are

φ(z) =
1√
2π
e
−
z2

2 and Φ(z) =

∫ z

−∞
φ(x)dx

for −∞ < z <∞.
A random variable X is said to have the normal distribution,
with parameters µ and σ, denoted by X ∼ N(µ, σ2), if its PDF
and CDF are

f(x) =
1

σ
φ

(
x− µ
σ

)
and F (x) = Φ

(
x− µ
σ

)
.

for −∞ < x <∞. We have E(X) = µ and Var(X) = σ2.
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Summary: This session we learnt...

Models for Discrete Random Variable

Binomial, Geometric, Poisson
Models for Continuous Random Variable

Exponential, Normal
Next Time

Joint Distribution of Random Variables
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Cumulative Distribution
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Probability Density
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4 Topic 3: Discrete and
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Variables

The Bernoulli and
Binomial Distributions
The Geometric
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Distribution
Conditional Probability
Functions
Conditional Expectation:
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Independence
Functions of Random
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Correlation and Regression
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Regression Models
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Square Method
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Intended Learning Outcomes

By the end of this session you will be able to...

1 Understand joint random variables.

2 Calculate marginal distributions.

3 Calculate conditional probabilities and expectations.

4 Learn about independent random variables.

5 Calculate expectations and variance of functions of random
variables.

6 Calculate covariance of random variables.
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Introduction

In some experiments we record multivariate observations.

For example, studies of atmospheric turbulence we may
quantifying the degree of relationship between the
components X,Y , and Z of wind velocity.

Studies of car safety may focus on the relationship between
the velocity X and stopping distance Y under different road
and weather conditions.

To study these we need the concept of the joint
distribution of the random variables.

This will allow use to study correlation and regression.
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Joint Probability Distribution: PMF

Definition (Joint PMF)

The joint, or bivariate, probability mass function (PMF) of the
jointly discrete random variables X and Y is defined as

p(x, y) = P (X = x, Y = y).

Remark 1: Properties of Joint Distributions

If S = {(x1, y1), (x2, y2), ...} is the sample space of (X,Y ),
then axioms of probability imply that

p(xi, yi) ≥ 0 for all i and
∑

(xi,yi)∈S

p(xi, yi) = 1.

Furthermore,

P (a < X ≤ b, c < Y ≤ d) =
∑

a<xi≤b, c<yi≤d
p(xi, yi).
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Marginal Distributions PMF

Definition (Marginal Distributions PMF)

The marginal PMFs of X and Y are obtained as

PX(x) =
∑
y∈SY

p(x, y) and PY (y) =
∑
x∈SX

p(x, y).

Example

Let X,Y have the joint PMF as shown in the following table.

y
p(x, y) 1 2

1 0.3 0.13
x 2 0.06 0.26

3 0.1 0.15

Find the marginal PMF of Y and

P (0.5 < X ≤ 2.5, 1.5 < Y ≤ 2.5) and P (0.5 < X ≤ 2.5).
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Example Cont I

For marginal PMF of Y we have

pY (1) = p(1, 1) + p(2, 1) + p(3, 1) = 0.3 + 0.06 + 0.1 = 0.46

pY (2) = p(1, 2) + p(2, 2) + p(3, 2) = 0.13 + 0.26 + 0.15 = 0.54.

For

P (0.5 < X ≤ 2.5, 1.5 < Y ≤ 2.5) = p(1, 2) + p(2, 2)

= 0.13 + 0.26 = 0.39.

And for

P (0.5 < X ≤ 2.5) = p(1, 1) + p(1, 2) + p(2, 1) + p(2, 2)

= 0.3 + 0.06 + 0.13 + 0.26 = 0.75.
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Example Cont II

Calculating marginal distribution for both X and Y , we can
create a table

y
p(x, y) 1 2 pX(x)

1 0.3 0.13 0.43
x 2 0.06 0.26 0.32

3 0.1 0.15 0.25

pY (y) 0.46 0.54

Remark 2: Multivariate PMF Distributions

If X1, X2, ..., Xn are jointly discrete, their joint or multivariate
PMF is defined as

p(x1, x2, ..., xn) = P (X1 = x1, X2 = x2, ..., Xn = xn).
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Joint Probability Distribution: PDF

Definition (Joint PDF)

The joint, or bivariate, density function of the jointly continuous
random variables X and Y is a nonnegative function f(x, y) with
the property that the probability that (X,Y ) will take a value in
a region A of the x− y plane equals the volume under the
surface defined by f(x, y) and above the region A.

Remark 3: Properties of Joint Distributions

The axioms of probability imply that∫ ∞
−∞

∫ ∞
−∞

f(x, y)dxdy = 1.

Furthermore,

P (a ≤ X ≤ b, c ≤ Y ≤ d) =

∫ d

c

∫ b

a
f(x, y)dxdy.
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Marginal Distributions PDF

Definition (Marginal Distributions PMF)

The marginal PDFs of X and Y are obtained as

pX(x) =

∫ ∞
−∞

f(x, y)dy and pY (y) =

∫ ∞
−∞

f(x, y)dx.

Example

Let X,Y have the joint density function

f(x, y) =


12

7

(
x2 + xy

)
0 ≤ x, y ≤ 1

0 otherwise.

Find the following.

1 P (X ≤ 0.6, Y ≤ 0.4)

2 Marginal PDF of X and Y .
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Example Cont

1 We have

P (X ≤ 0.6, Y ≤ 0.4) =

∫ 0.4

0

∫ 0.6

0

12

7

(
x2 + xy

)
dxdy

=

∫ 0.4

0

[
12

7

(
x3

3
+
x2y

2

)]x=0.6

x=0

dy

=

∫ 0.4

0

12

7

(
0.63

3
+

0.62y

2

)
dy

=
12

7

[
0.63

3
y +

0.62y2

4

]0.4
0

= 0.0741

2 We have

fX(x) =

∫ 1

0

12

7

(
x2 + xy

)
dy =

6

7

(
2x2 + x

)
,

fY (y) =

∫ 1

0

12

7

(
x2 + xy

)
dx =

2

7
(2 + 3y) .
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Conditional Probability Functions

Remark 4: Multivariate PDF Distributions

If X1, X2, ..., Xn are jointly discrete, their joint or multivariate
PDF can be defined as f(x1, x2, ..., xn), a multivariate function.

Definition (Conditional PMF)

Conditional PMF of Y given X = x is given by

pY |X=x(y) =
p(x, y)

pX(x)
, y ∈ SY .

For the example on slide 47 we have

y
p(x, y)/pX(x) 1 2 pX(x)

pY |X=1(y) 0.3
0.43

0.13
0.43 0.43

pY |X=2(y) 0.06
0.32

0.26
0.32 0.32

pY |X=3(y) 0.1
0.25

0.15
0.25 0.25
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Conditional Probability Functions

Definition (Conditional PDF)

Conditional PDF of Y given X = x is given by

fY |X=x(y) =
f(x, y)

fX(x)
.

For the example on slide 50 we have

fY |X=x(y) =
2
(
x2 + xy

)
(2x2 + x)

for 0 ≤ y ≤ 1.

And

fX|Y=y(x) =
6
(
x2 + xy

)
(2 + 3y)

for 0 ≤ x ≤ 1.

Exercise 1: Conditional Probability

Find P (Y < 0.4 | X = 1).
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Conditional Expectation: Regression Function

The conditional expected value of Y given that X = x,

µY |X(x) = E(Y | X = x)

when considered as a function of x, is called the regression
function of Y on X.

Definition (Conditional Expectation, Discrete)

Regression function for jointly discrete (X,Y ) is given by

µY |X(x) =
∑
y∈SY

ypY |X=x(y), x ∈ SX .

For the example on slide 47 we have
y

p(x, y)/pX(x) 1 2 E(Y | X = x)

pY |X=1(y) 0.3
0.43

0.13
0.43

0.3
0.43 + 2× 0.13

0.43

pY |X=2(y) 0.06
0.32

0.26
0.32

0.06
0.32 + 2× 0.26

0.32

pY |X=3(y) 0.1
0.25

0.15
0.25

0.1
0.25 + 2× 0.15

0.25
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Conditional Expectation

Definition (Conditional Expectation Continuous)

Regression function for jointly continuous (X,Y ) is given by

µY |X(x) =

∫ ∞
−∞

yfY |X=x(y)dy, x ∈ SX .

For the example on slide 50 we have

µY |X(x) =

∫ ∞
−∞

yfY |X=x(y)dy =

∫ 1

0
y

2
(
x2 + xy

)
(2x2 + x)

dy for 0 ≤ x ≤ 1.

And

µX|Y (y) =

∫ ∞
−∞

xfX|Y=y(x)dx =

∫ 1

0
x

6
(
x2 + xy

)
(2 + 3y)

dx for 0 ≤ y ≤ 1.
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Law of Total Expectation

The expected value of Y can be obtained as the expected
value of the regression function.

This is called the Law of Total Expectation.

E(Y ) = E [E(Y | X)] .

Therefore,

E(Y ) =
∑
x∈SX

E(Y | X = x)pX(X = x) =
∑
x∈SX

µY |X(x)pX(X = x)

or in the continuous case

E(Y ) =

∫ ∞
−∞

E(Y | X = x)fX(x)dx =

∫ ∞
−∞

µY |X(x)fX(x)dx.
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Independence

The random variables X and Y are independent if any event
defined in terms of X is independent of any event defined in
terms of Y .

In particular, X and Y are independent if

P (X ∈ A, Y ∈ B) = P (X ∈ A)P (Y ∈ B),

holds for any two sets (subsets of the real line) A and B.

For the discrete case we have

pX,Y (x, y) = pX(x)pY (y),

holds for all x, y.

For the continuous case

fX,Y (x, y) = fX(x)fY (y),

holds for all x, y.
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Example

1 Random variable X and Y in the table
y

p(x, y) 1 2 pX(x)
1 0.3 0.13 0.43

x 2 0.06 0.26 0.32
3 0.1 0.15 0.25

pY (y) 0.46 0.54

are not dependent, since 0.3 6= 0.43× 0.46.

2 Random variable X and Y in the table
y

p(x, y) 1 2 pX(x)
x 1 0.08 0.02 0.1

2 0.72 0.18 0.9
pY (y) 0.8 0.2

are independent.

3 The random variables in example on slide 50 are not
independent since 12

7

(
x2 + xy

)
6= 6

7

(
2x2 + x

)
× 2

7 (2 + 3y).
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Consequences of Independence

Let X and Y be independent jointly discrete random variables
(similar holds when PDFs replacing PMFs). Then we have the
following.

pY |X=x(y) =
p(x, y)

pX(x)
=
pX(x)pY (y)

pX(x)
= pY (y),

similarly, pX|Y=y(x) = pX(x).
The regression function is constant,

µY |X(x) =
∑
y∈SY

ypY |X=x(y) =
∑
y∈SY

ypY (y) = E(Y ), x ∈ SX ,

similarly µX|Y (y) = E(X).
For any functions g and h, we have g(X) and h(Y ) are
independent.
We have

E [g(X)h(Y )] = E [g(X)]E [h(Y )] .

Kayvan Nejabati Zenouz MATH1180



117

Independent and Identically Distributed

Remark 5: Multivariate Distributions

The jointly discrete random variables X1, X2, ..., Xn are
independent if and only if

p(x1, x2, ..., xn) = pX1(x1) · · · pXn(xn),

and the jointly continuous X1, X2, ..., Xn are independent if and
only if

f(x1, x2, ..., xn) = fX1(x1) · · · fXn(xn).

Definition (IID Variables)

If X1, X2, ..., Xn are independent and also have the same
distribution (which is the case of a simple random sample from
an infinite/hypothetical population) they are called
independent and identically distributed, or iid for short.
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Functions of Random Variables

Let (X,Y ) be discrete with joint PMF p(x, y). The expected
value of a function, h(X,Y ), of (X,Y ) is computed by

E[h(X,Y )] =
∑
x∈SX

∑
y∈SY

h(x, y)p(x, y).

Let (X,Y ) be continuous with joint PDF f(x, y). The
expected value of a function, h(X,Y ), of (X,Y ) is computed
by

E[h(X,Y )] =

∫ ∞
∞

∫ ∞
∞

h(x, y)f(x, y)dxdy.

The variance of h(X,Y ) is computed by

σ2h(X,Y ) = E
[
h2(X,Y )

]
− [E [h(X,Y )]]2 .
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Applications

Example

Show that for any two random variables X and Y we have

E(X + Y ) = E(X) + E(Y ).

Let X1, ..., Xn be any n random variables (i.e., they may be
discrete or continuous, independent or dependent), with
marginal means E(Xi) = µi. Then

E (a1X1 + · · ·+ anXn) = a1µ1 + · · ·+ anµn,

where ai are constants. In particular, if
µ1 = µ2 = · · · = µn = µ, then

E (X1 + · · ·+Xn) = nµ, and E(X) = µ.
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Variance of Sum and Covariance

Let’s consider the variance of X + Y , then we have

Var (X + Y ) = E
{

[X + Y − E (X + Y )]2
}

= Var(X) + Var(Y )

+ 2E [(X − E(X)) (Y − E(Y ))] .

If X and Y are independent, then we have

E [(X − E(X)) (Y − E(Y ))] = 0.

The quantity E [(X − E(X)) (Y − E(Y ))] is known as the
covariance of X and Y denoted by

Cov(X,Y ) = σX,Y = E [(X − E(X)) (Y − E(Y ))]

= E(XY )− µXµY .
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Exercise 2: Covariance

1 Calculate Cov(X,Y ) for the discrete random variables X,Y
with p(x, y) given by table below

y
p(x, y) 1 2 pX(x)

1 0.3 0.13 0.43
x 2 0.06 0.26 0.32

3 0.1 0.15 0.25

pY (y) 0.46 0.54

2 Calculate Cov(X,Y ) when X,Y have the joint density
function

f(x, y) =


12

7

(
x2 + xy

)
0 ≤ x, y ≤ 1

0 otherwise.
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Properties of Variance

Let σ21 and σ22 denote the variances of X1, X2, respectively.
Then

1 If X1, X2 are independent (or just Cov(X1, X2) = 0),

Var(X1 +X2) = σ2
1 + σ2

2 , Var(X1 −X2) = σ2
1 + σ2

2

2 If X1, X2 are dependent,

Var(X1 +X2) = σ2
1 + σ2

2 + 2Cov(X,Y ),

Var(X1 −X2) = σ2
1 + σ2

2 − 2Cov(X,Y ).

If X1, ..., Xn are independent (or just Cov(Xi, Xj) = 0 for all
i 6= j) with variances σ21, ..., σ

2
n,

Var(a1X1 + · · ·+ anXn) = a21σ
2
1 + · · ·+ a2nσ

2
n.

where ai are constants.
If X1, ..., Xn are not independent, then

Var(a1X1 + · · ·+anXn) = a21σ
2
1 + · · ·+a2nσ

2
n+
∑
i

∑
i 6=j

aiajσij .
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Properties of Variance and Covariance

Let X1, ..., Xn be iid (i.e., a simple random sample from an
infinite population) with common variance σ2. Then,

Var (X1 + · · ·+Xn) = nσ2, and E(X) =
σ2

n
.

We have
1 Cov(X,Y ) = Cov(Y,X).
2 Cov(X,X) = Var(X).
3 If X,Y are independent, then Cov(X,Y ) = 0.
4 Cov(aX + b, cY + d) = acCov(X,Y ) for any real numbers
a, b, c, and d.
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Summary

What we did today...

Joint Random Variables

PMF, PDF, marginals
Conditional Probabilities

Conditional Expectation
Independence

iid variables
Functions of Random Variables

Expectation, variance of sums, covari-
anceNext Time

Pearson’s Correlation and Regression
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Intended Learning Outcomes

By the end of this session you will be able to...

1 Understand how to quantify dependence of random
variables.

2 Calculate Pearson’s correlation coefficient.

3 Learn the concepts behind linear regression models.

4 Interpret R output for a linear regression.

5 Preform model checking on linear models.
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Introduction

In the previous topic we studied joint distribution of the
random variables.

For X and Y random variables which are jointly distributed
we defined the concepts of independence.

pX,Y (x, y) = pX(x)pY (y), fX,Y (x, y) = fX(x)fY (y).

When two random variables X and Y are not independent,
they are dependent: correlation is a mean for quantifying
dependence.

Variables X and Y are positively dependent, or
positively correlated, if “large” values of X are associated
with “large” values of Y and “small” values of X are
associated with “small” values of Y .

Similarly you can have negatively dependent or
negatively correlated variables.

An example of negatively dependent variables is X stress
applied and Y time to failure.
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Dependence

Recall for X and Y , then the regression function

µY |X(x) = E(Y | X = x)

is a function of x.

Now if X and Y are positively dependent, then µY |X(x)
is an increasing function of x.

For example, consider X height and Y weight then, due to
the positive dependence of these variables, we have
µY |X(1.82) < µY |X(1.90), that is, the average weight of men
1.82 meters tall is smaller than the average weight of men
1.90 meters tall.

It turns out that dependence is positive or negative if the
covariance takes a positive or negative value, respectively.
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Covariance as a Measure of Dependence

Consider a finite population of N units.

Let (x1, y1), (x2, y2), ..., (xN , yN ) denote the values of a
bivariate characteristic of interest for each of the N units,
and let (X,Y ) denote the bivariate characteristic of a
randomly selected unit.

Then (X,Y ) has a discrete distribution taking each of the
possible values (x1, y1), (x2, y2), ..., (xN , yN ) with probability
1/N .

In this case the covariance formula in definition can be
written as

σX,Y =
1

N

∑
i=1

(xi − µX) (yi − µY ) .

The value of σX,Y will tend to be positive or negative based
on dependence of X and Y .
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Pearson’s Correlation Coefficient

Definition (Pearson’s Correlation)

The Pearson’s (or linear) correlation coefficient of X and Y ,
denoted by Corr(X,Y ) or ρX,Y , is defined as

ρX,Y = Corr(X,Y ) =
Cov(X,Y )

σXσY
,

where σX and σY are the marginal standard deviations of X,Y ,
respectively.
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Properties

Remark 1: Properties of Correlation Coefficient

If a and c are either both positive or both negative, then

Corr(aX + b, cY + d) = Corr(X,Y ).

If a and c are of opposite signs, then
Corr(aX + b, cY + d) = −Corr(X,Y ).

We have −1 ≤ ρX,Y ≤ 1.

If X and Y are independent, then ρX,Y = 0.

We have ρX,Y = 1 or −1 if and only if Y = aX + b for some
a, b with a 6= 0.
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Exercise 1: Correlation Coefficient

1 Calculate Corr(X,Y ) for the discrete random variables X,Y
with p(x, y) given by table below

y
p(x, y) 1 2 pX(x)

1 0.3 0.13 0.43
x 2 0.06 0.26 0.32

3 0.1 0.15 0.25

pY (y) 0.46 0.54

2 Calculate Corr(X,Y ) when X,Y have the joint density
function

f(x, y) =


12

7

(
x2 + xy

)
0 ≤ x, y ≤ 1

0 otherwise.
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Covariance and Correlation Coefficient for Samples

If (X1, Y1), ..., (Xn, Yn) is a sample from the bivariate
distribution of (X,Y ), the sample covariance, denoted by

̂Cov(X,Y ) or SX,Y , and sample correlation coefficient,

denoted by ̂Corr(X,Y ) or rX,Y , are defined as

SX,Y =
1

n− 1

n∑
i=1

(
Xi −X

) (
Yi − Y

)
rX,Y =

SX,Y
SXSY

.

A computational formula for the sample covariance is

SX,Y =
1

n− 1

[
n∑
i=1

XiYi −
1

n

(
n∑
i=1

Xi

)(
n∑
i=1

Yi

)]
.
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Remark 2: Correlation Coefficient for Samples

The value of rX,Y needs to be interpreted carefully, especially
when:

X and Y have a non-linear relationship.

There are influential values or outliers.

If X and Y are not normally distributed.

You must plot the data before interpreting the value of rX,Y .
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Regression Models

Regression models are used whenever the primary objective
of the study is to understand the nature of the regression
function of a variable Y on another variable X.

For example, a study of the speed, X, of a car and the
stopping distance, Y .

In regression studies Y is called the response variable,
and X is interchangeably referred to as the covariate, or
the independent variable, or the predictor, or the
explanatory variable.

Because interest lies in the conditional mean of Y given
X = x. In fact we have hierarchical modelling consisting
of

Y | X = x ∼ FY |X=x(y), X ∼ FX(x)

Where the conditional distribution of Y given X = x,
FY |X=x(y), and the marginal distribution of X, FX(x), may
or may not specified, can depend on additional parameters.
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The Simple Linear Regression Model

The simple linear regression model specifies that the
regression function of Y on X is linear, that is,

µY |X(x) = β0 + β1x,

and the conditional variance of Y given X = x, denoted by
σ2ε , is the same for all values x, known as the
homoscedasticity assumption.

In this model, β0, β1, and σ2ε are unknown parameters.

The marginal expectation of Y is given by

E(Y ) = β0 + β1µX .

For the simple linear regression model, where E(Y | X) is
given by either the mean plus error form is

Y = β0 + β1x+ ε.
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Properties of Mean Plus Error

The intrinsic error ε has zero mean and is uncorrelated
from the explanatory variable X, with Var(ε) = σ2ε so

E(ε) = 0, Cov(ε,X) = 0, and Var(ε) = σ2ε .

If the regression function of Y on X is linear, then
1 The marginal variance of Y is

σ2
Y = σ2

ε + β2
1σ

2
X

2 The slope β1 is related to the covariance, σX,Y , and the
correlation, ρX,Y , by

β1 =
σX,Y
σ2
X

= ρX,Y
σY
σX
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Regression Line Sample for Samples

If (X1, Y1), ..., (Xn, Yn) is a sample from the bivariate
distribution of (X,Y ), then σX,Y can be estimated by SX,Y so

β̂1 =
SX,Y
S2
X

, and β0 = Y − β̂1X.
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The Normal Simple Linear Regression Model

The normal regression model specifies that the conditional
distribution of Y given X = x is normal

Y | X = x ∼ N(µY |X(x), σ2ε ).

The normal simple linear regression model is also written as

Y = β0 + β1x+ ε, ε ∼ N(0, σ2ε ).
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Example

The following is an R output for a linear regression.

Call:

lm(formula = dist ~ speed, data = cars)

Residuals:

Min 1Q Median 3Q Max

-29.069 -9.525 -2.272 9.215 43.201

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -17.5791 6.7584 -2.601 0.0123 *

speed 3.9324 0.4155 9.464 1.49e-12 ***

---

Signif.codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’

’ 1

Residual standard error: 15.38 on 48 degrees of freedom

Multiple R-squared: 0.6511, Adjusted R-squared: 0.6438

F-statistic: 89.57 on 1 and 48 DF, p-value: 1.49e-12
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Interpretations

The formula is given by

dist = −17.5791 + 3.9324× speed.

The residual degrees of freedom is 48 and we have 2
parameters estimates, so 50 observation.

The small p-value for the coefficient estimate for speed
shows that the value for estimate is significantly different
from zero.

The small p-value for the F-statistics shows the significance
of the overall regression.

The R2 value is 0.6511 and its signifies roughly how much of
the variation in data has been explained by the regression
model.
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Model Checking

The assumptions of linear regression is that there is a linear
relationship between response variable yi and explanatory
variable xi which has the form

yi = β0 + β1xi + εi

where εi are independent and from a normal distribution
N(0, σ2ε ). These we can check by residual plots.
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Residual Plots
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Residuals vs Fitted

There should be no obvious pattern in the spread of residuals
and their spread constant around the dashed line. Here we have
a few large positive residuals and a slight non-linear pattern in
the residuals.
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Residual Plots
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Residuals should fit the Q-Q plot as much as possible. Here
there is some deviation in the tails.
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Residual Plots
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Here the blue line should be as horizontal as possible.
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Residual Plots
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Point with large Cook’s distance can influence the model and
indicate outliers. The Cook’s distance is considered high if it is
greater than 0.5 and extreme if it is greater than 1.
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Residual Plots
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Points with large Leverage and Residual should be checked, they
may indicate outliers.
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Residual Plots
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Points with large Leverage and Cook’s distance should be
checked.
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The Multiple Linear Regression Model

The multiple linear regression (MLR) model specifies that the
conditional expectation,

E(Y | X1 = x1, ..., Xk = xk) = µY |X1,...,Xk(x1, ..., xk),

of a response variable Y given the values of k predictor variables,
X1, ..., Xk, is a linear function of the predictors’ values:

µY |X1,...,Xk(x1, ..., xk) = β0 + β1x1 + · · ·+ βkxk.
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Model Fitting with Least Square Method

The method of least squares (LS), which is the most
common method for fitting regression models.

Let (X1, Y1), ..., (Xn, Yn) denote a simple random sample
from a bivariate population (X,Y ).

We would like to find estimates β̂0 and β̂1 for the equation

µY |X(x) = β0 + β1x.

For this we can find β̂0 and β̂1 which minimise

L(β0, β1) =

n∑
i=1

(Yi − β0 − β1Xi)
2

These estimates are given by

β̂1 =
n
∑
XiYi −

∑
Xi
∑
Yi

n
∑
X2
i − (

∑
Xi)

2 , β̂0 = Y − β1X.
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Residuals

Given the estimates in the previous pages,

Ŷi = β̂0 − β̂1Xi

are called fitted values.

The estimated intrinsic error variables

ε̂i = Yi − Ŷi = Yi − β̂0 − β̂1Xi,

are called residuals.

Because the computation of residuals requires that two
parameters be estimated, we use the following estimating σ2ε

S2
ε =

1

n− 2

n∑
i=1

ε̂i
2.
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Summary

What we did today...

Pearson’s Correlation Coefficient

ρX,Y = Corr(X,Y ) =
Cov(X,Y )

σXσY
Regression Models

Parameters and model checking
Regression Models Fitting

Least Square Method
Next Time

Approximations and Confidence Intervals
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Lecture Contents

1 Introduction
Module Aims and
Assessment
Topics to be Covered
Programming Package R
RStudio GUI
Reading List and
References

2 Topic 1: Review of
Statistics and Probability

Population and Samples
Sampling Techniques
Statistical Visualisation
Populations/Samples
Parameters
Sample Spaces and Events
Probability of Events
Counting Techniques
Axioms of Probability
Conditional Probability
Total Law of Probability
and Bayes’ Theorem
Independent Events

3 Topic 2: Introduction to
Random Variables

Random Variables
Probability Mass
Function

Cumulative Distribution
Function
Probability Density
Function
Expected Value
Variance and Standard
Deviation

4 Topic 3: Discrete and
Continuous Random
Variables

The Bernoulli and
Binomial Distributions
The Geometric
Distribution
The Poisson Distribution
The Exponential
Distribution
The Normal Distribution

5 Topic 4: Joint Distribution
of Random Variables

Joint Probability
Distribution
Conditional Probability
Functions
Conditional Expectation:
Regression Function
Independence
Functions of Random
Variables
Variance and Covariance

6 Topic 5: Pearson’s
Correlation and Regression

Pearson’s Correlation
Coefficient
Regression Models
Model Checking
Model Fitting with Least
Square Method

7 Topic 6: Approximations
and Confidence Intervals

The Law of Large
Numbers
The Central Limit
Theorem
Confidence Intervals

8 Topic 7: Introduction to
Time Series

Times Series Data and
Visualisation
Definition and Examples
Time Series
Decomposition
Lags and Differences
Autocorrelation and
Autocovariance
Stationary Time Series
Trend and Seasonality
Autoregressive Moving
Average
Forecasting
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Intended Learning Outcomes

By the end of this session you will be able to...

1 Learn approximation results relating to sample estimates.

2 Understand and calculate confidence intervals.
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Introduction

We have seen that using a sample we can calculate several
useful quantities.

Intuition: the bigger the sample size the better the
approximation.

We shall review two approximation results:

The Law of Large Numbers is an explicit assertion that
above intuition is in fact true.
Central Limit Theorem provides an approximation to the
distribution of sums or averages.

Using the above we look at properties of point estimators.

In particular, the probability an estimate will be within a
certain distance from the true population: confidence
interval.
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Consistent Estimators

LLN justifies the approximation of the population mean by
the sample mean.

It does not help in determining how large the sample size
should be for a given quality of the approximation.

Given an estimator θ̂ of a parameter θ, we say that θ̂
converges in probability to θ, which means that for any

P
(∣∣∣θ̂ − θ∣∣∣ > ε

)
−→ 0 as n −→∞,

where n is the sample size.

Whenever an estimator converges in probability to the
quantity it is supposed to estimate, we say that the
estimator is consistent.

The LLN, stated below, asserts that averages possess the
consistency property.
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The Law of Large Number (LLN)

Theorem (The Law of Large Numbers)

Let X1, ..., Xn be independent and identically distributed and let g
be a function such that −∞ < E [g (X1)] <∞. Then,

1

n

n∑
i=1

g(Xi) converges in probability to E [g (X1)] .

Remark 1: The Law of Large Number for Mean

Note in the above if g(x) = x, then we have

1

n

n∑
i=1

Xi = X converges in probability to E (X1) = µ,

i.e., X is a consistent estimator of the population mean µ.
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Example

Cylinders are produced in such a way that their height is fixed at
5 centimetres (cm), but the radius of their base is uniformly
distributed in the interval (9.5 cm, 10.5 cm). The volume of each
of the next 100 cylinders to be produced will be measured, and
the 100 volume measurements will be averaged. What will the
approximate value of this average be?

Let Xi for i = 1, ..., 100, and X denote the volume
measurements and their average, respectively.

By the LLN, X should be approximately equal to the
expected volume of a randomly selected cylinder.

Since the volume is given by X = πR2h, we have

E(X) = E
(
R2
)

= 1572.1.

Thus, the value of X should be “close” to 1572.1.
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Distribution of Sums (Convolution)

Given a number of random variables X1, ..., Xn, sometimes
we are interested in the distribution of their sums.

For example, it is known that if X ∼ Poi(λ1) and
Y ∼ Poi(λ2) are independent, then

X + Y ∼ Poi(λ1 + λ2).

Similarly, if X ∼ Bin(n1, p) and Y ∼ Bin(n2, p) are
independent, then

X + Y ∼ Bin(n1 + n2, p).

In general given independent random variable X1, ..., Xn, it
may not be easy to find the distribution of their sum.
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Bivariate Normal Distribution

The bivariate normal distribution has the joint PDF of (X,Y )

f(x, y) =
1

2πσXσY
√

1 − ρ2
exp

{
−1

1 − ρ2

[
(x− µX )2

2σ2
X

−
ρ (x− µX ) (y − µY )

σXσY
+

(y − µY )2

2σ2
Y

]}

where µX , µY , σX , σY and ρ are given. It has the following
properties.

The marginal distribution of Y is also normal.

If X and Y are uncorrelated then they are independent.

If X and Y are independent normal random variables, their
joint distribution is bivariate normal with parameters
µX , µY , σX , σY and ρ = 0.

Any linear combination of X and Y has a normal
distribution. In particular,

aX + bY ∼ N(aµX + bµY , a
2σ2X + b2σ2Y + 2abCov(X,Y )).
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Distribution of Sum in the Normal Case

Proposition

Let X1, ..., Xn are independent and normally distributed random
variables with Xi ∼ N(µi, σ

2
i ). Let Y = a1X1 + · · ·+ anXn be a

linear combination of Xi. Then

Y ∼ N(µY , σ
2
Y )

where µY = a1µ1 + · · ·+ anµn and σ2Y = a21σ
2
1 + · · ·+ a2nσ

2
n

Example

If X1 ∼ N(0, 1), X2 ∼ N(−1, 4) and X3 ∼ N(2, 2). Then for
Y = X1 + 2X2 + 3X3 we have

Y ∼ N(0 + 2× (−1) + 3× 2, 1 + 22 × 4 + 32 × 2) = N(4, 35).
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Distribution of X in the Normal Case

Corollary

Let X1, ..., Xn be iid N(µ, σ2), and let X be the sample mean.
Then

X ∼ N(µ,
σ2

n
).

Exercise 1: Distribution of X

It is desired to estimate the mean of a normal population whose
variance is known to be σ2 = 9. What sample size should be
used to ensure that X lies within 0.3 units of the population
mean with probability 0.95?
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Central Limit Theorem

A simple way to approximate sum or average of a large
number of random variables.

Most important theorem in probability and statistics.

Theorem (The Central Limit Theorem)

Let X1, ..., Xn be iid with mean µ and a finite variance σ2. Then
for large enough n (n ≥ 30 for our purposes), we have that X
has approximately a normal distribution with mean µ and

variance
σ2

n
, that is

X ∼ N
(
µ,
σ2

n

)
.

The quality of the approximation increases with n, and
also depends on the population distribution.

For example, data from skewed populations require a larger
sample size than data from, say, the uniform distribution.
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Example

The number of units serviced in a week at a certain service
facility is a random variable having mean 50 and variance 16.
Find an approximation to the probability that the total number
of units to be serviced at the facility over the next 36 weeks is
between 1728 and 1872. Solution.

Let X1, ..., X36 denote the number of units that are serviced
in each of the next 36 weeks, and assume they are iid.

Set T =
∑36

i=1Xi. Then E(T ) = 36× 50 = 1800 and
Var(T ) = 36× 16 = 576.

Since the sample size is n ≥ 30, according to the CLT the
distribution of T is approximately normal with mean 1800
and variance 576.

Thus we need P (1728 < T < 1872)

> pnorm(1872,1800,sqrt(576))-pnorm(1728,1800,sqrt(576))

[1] 0.9973002
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Estimation

Estimation of population parameters, such as proportion,
mean, variance, covariance and Pearson’s correlation
coefficients, is achieved by using the corresponding sample
quantities.

The Greek letter θ will be used as a generic notation for any
model or population parameter(s) that we are interested in
estimating.

When a sample is denoted in capital letters, such as
X1, ..., Xn, the Xi’s are considered random variables, that is,
before their values are observed.

The observed sample values, or data, are denoted in
lowercase letters, that is, x1, ..., xn.

A quantity used to estimate the true value of a parameter
θ is denoted by θ̂.

Then θ̂ = θ̂(X1, ..., Xn) is known as the an estimator and
θ̂ = θ̂(x1, ..., xn) is an estimate.
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Confidence Intervals (CI)

Estimators approximate population parameters but, in
general, are different from them.

CLT allows one to assess the probability that an
estimator will be within a certain distance from the true
population parameter.

Confidence intervals have been devised to address the lack
of information that is inherent in the practice of reporting
only a point estimate.

A confidence interval is an interval for which we can
assert, with a given degree of confidence/certainty, that it
includes the true value of the parameter being estimated.
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Construction of Confidence Interval I

Distribution of θ̂

By CLT if sample size is large enough, then θ̂ is
approximately normally distributed with mean θ.

By LLN estimated standard error S
θ̂

will be good estimate

of

√
Var

(
θ̂
)

.

Taken together, these facts imply that

θ̂ ∼ N(θ, S
θ̂
) or Z =

θ̂ − θ
S
θ̂

∼ N(0, 1).
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Construction of Confidence Interval II

Now to construct an interval which we expect to contain the
true parameter, for example, 95% of the time we need

P (|Z| < α) = P (−α < Z < α) = 0.95.

> qnorm(0.975, mean = 0, sd = 1)

[1] 1.959964 # P(Z<alpha)=0.975

Therefore we need
|Z| ≤ 1.96,

i.e.,

−1.96 ≤ θ̂ − θ
S
θ̂

≤ 1.96

For a particular estimate of θ we have a 95% confidence
interval

θ̂ − 1.96S
θ̂
≤ θ ≤ θ̂ + 1.96S

θ̂
.
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Z and T Confidence Intervals

Confidence intervals using standard normal distribution are
known as Z confidence intervals.
Z intervals for mean used only if the population variance is
known and either the population is normal or the sample
size is at least 30.
When sampling from normal populations, an estimator θ̂ of
some parameter θ often satisfies, for all sample sizes n,

θ̂ − θ
S
θ̂

∼ Tν .

Tν stands for the T distribution with ν degrees of freedom.
The degrees of freedom depend on the sample size.
A T distribution is symmetric and its PDF tends to that of
the standard normal as ν tends to infinity.
Then for (1− α)100% confidence interval we have the
following bound on the error

θ̂ − tν,α/2Sθ̂ ≤ θ ≤ θ̂ + tν,α/2Sθ̂.
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T CI for the Mean

Let X1, ..., Xn be a simple random sample from a
population, and let X, S2 denote the sample mean and
sample variance, respectively.

If the population is normal (if not we need n ≥ 20), then

X − µ
S/
√
n
∼ Tn−1.

Then for (1− α)100% confidence interval we have the
following bound on the error

X − tn−1,α/2
S√
n
≤ µ ≤ X + tn−1,α/2

S√
n
.

In R you can use

confint(lm(x~1), level=1-alpha)
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Example

A random sample of n = 56 cotton pieces gave average percent
elongation of X = 8.17 and a sample standard deviation of
S = 1.42. Construct a 95% CI for µ, the population mean
percent elongation. Solution.

Because the sample is large enough, the CI can be used
without the assumption of normality.

The degrees of freedom is ν = 56− 1 = 55.

The R command qt(0.975, 55) = 2.004 gives the exact value

Using the approximate value of the percentile, 2.01 and the
given sample information, we obtain

7.80 ≤ µ ≤ 8.54.
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Summary

What we did today...

Approximations

The Law of Large Numbers, The Central
Limit TheoremConfidence Intervals

Estimation, T CI for the Mean
Next Time

Introduction to Time Series
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The Exponential
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Distribution
Conditional Probability
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Functions of Random
Variables
Variance and Covariance

6 Topic 5: Pearson’s
Correlation and Regression

Pearson’s Correlation
Coefficient
Regression Models
Model Checking
Model Fitting with Least
Square Method

7 Topic 6: Approximations
and Confidence Intervals

The Law of Large
Numbers
The Central Limit
Theorem
Confidence Intervals

8 Topic 7: Introduction to
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Times Series Data and
Visualisation
Definition and Examples
Time Series
Decomposition
Lags and Differences
Autocorrelation and
Autocovariance
Stationary Time Series
Trend and Seasonality
Autoregressive Moving
Average
Forecasting
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Intended Learning Outcomes

By the end of this session you will be able to...

1 Learn basic properties of times series.

2 Use software package R to analyse time series data.
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Introduction

Time series analysis is concerned with experimental data
that have been observed at different points in time.

A few examples include

Daily stock market, GDP, quotations or monthly
unemployment figures.
Population series, such as birthrates or school enrolments.
The number of influenza cases observed over some time
period.
Blood pressure measurements traced over time useful for
evaluating drugs used.
Functional magnetic resonance imaging of brain-wave time
to study how the brain reacts to certain stimuli under various
experimental conditions.

We shall look at visualisation, modelling, and
forecasting for time series.
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Times Series Data

We usually have correlation introduced by the sampling of
adjacent points in time.
This means methods dependent on the assumption that
these adjacent observations are independent and
identically distributed is not valid.
A basic time series data looks like the following.

Table: Quarterly Sales Data

Q1 Q2 Q3 Q4

2010 2.00 1.76 1.45
2011 4.78 5.72 8.78 8.39
2012 10.37 5.40 5.02 6.60
2013 8.99 10.69 13.11 10.57
2014 8.69 7.94 11.62 11.20
2015 18.76 12.40 13.13 11.56
2016 14.00 13.30 15.67 14.75
2017 15.02 11.20 14.88
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Visualisation

You can plot your time series for time on the x-axis and values
on the y-axis.
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Time Series in R

You can create tm series in R using ts() function.

value <- 1:30 + rnorm(30,0,2) # Any vector of values

ts(value, frequency=365, start=c(2014, 6)) # Daily

ts(value, frequency=4, start=c(2010, 2)) # frequency 4 =>

Quarterly Data

ts(value, frequency=12, start=1990) # freq 12 => Monthly

data.

ts(value, start=c(2001), end=c(2014), frequency=1) # Yearly

Data

library(xts) # Using xts library

dates <- seq(as.Date("2016-01-01"), length=30, by="days")

xts(x = value, order.by = dates)

Alternatively you can use xts, or zoo library.
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Applications of Times Series

Trend, Periodicity, Noise, Forecast

It allow us to observe the primary patterns in the time
history, underlying trend.

Regular variation superimposed on the trend that seems
to repeat over periods, underlying periodicity or
seasonality.

Forecast the from current data the future events and
determine uncertainty.

May also be interested in analysing several time series at
once to study their relationship.
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Time Series Definition

Definition

A time series can be defined as a collection of random
variables indexed according to the order they are obtained
in time.

For each point in time t = 0, 1, 2, ..., minute, hours, day,
month, etc.., we have a random variable Xt.

In general, a collection of random variables {Xt} indexed by
t is referred to as a stochastic process.

The observed values of a stochastic process {xt} are
referred to as a realization of the stochastic process.

A description of a time series, observed as a collection of n
random variables at arbitrary time points t1, t2, ..., tn is
provided by the joint distribution function.
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White Noise

In this case we have E(Xt) = 0 and Var(Xt) = σ2, so

Xt ∼ wn(0, σ2) or Xt ∼ iid(0, σ2), Xt ∼ iidN(0, σ2).
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Linear Trend and White Noise

In this case we have E(Xt) = µt = β0 + β1t and Var(Xt) = σ2.
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Seasonality and White Noise

In this case we have E(Xt) = µt = A cos (2πωt+ φ) and
Var(Xt) = σ2.
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First Order Autoregressive (Random Walk with Drift)

In this case we have Xt = Xt−1 + δ + εt.
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Time Series Decomposition

A time series can be expressed as either a sum or a product
of 3 components of Seasonality St, Trend Tt and Error
εt, a.k.a White Noise.

That is we have

Additive time series:

Xt = Tt + St + εt.

Multiplicative time series:

Xt = Tt × St × εt.

A multiplicative time series can be converted into and
additive one by taking logarithm

log (Tt × St × εt) = log Tt + logSt + log εt.
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Lags and Differences

Definition (jth Lag)

Previous values of a time series are called lags. The first lag of
Xt is Xt−1. The jth lag of Xt is Xt−j , sometimes written as
BjXt. Lags of univariate or multivariate time series objects are
conveniently computed by lag(mytsdata,j)

Example

If Xt = εt, then Xt−j = εt−j .

If Xt = β0 + β1t+ εt, then Xt−j = β0 + β1(t− j) + εt−j .

Definition (jth Difference)

The difference between Xt and Xt−j is denoted by
∆jXt = Xt −Xt−j , you can iterate it k-times and get ∆k

j , this is
computed by diff(mytsdata, lag = j, differences=k).
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Autocorrelation and Autocovariance

It is important to know if Xt is correlated with the previous
values in time, i.e., if Xt and BjXt = Xt−j are related for some j.

Definition (Autocorrelation and Autocovariance)

The covariance between Xt and Xs is called the (s− t)th
autocovariance of the series Xt. Autocorrelation coefficient, also
called the serial correlation coefficient, measures the correlation
between Xt and Xs, so we have

(s− t)thAutocovariance = γX(s, t) = Cov(Xs, Xt)

(s− t)thAutocorrelation = ρX(s, t) =
Cov(Xs, Xt)√

Cov(Xs, Xs)Cov(Xt, Xt)
.

You can use acf(mytsdata, lag = k) to see the first k
autocorrelations.

Note if ρX(t, s) is around ±1, then we may hope for a linear
relationship Xt = β0 + β1Xs + εt.
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The Cross-covariance and Cross-correlation

Given two time series Xs and Yt we may be interested they are
correlated with the previous values in time, i.e., if Xt and
BjYt = Yt−j are related for some j.

Definition (The Cross-covariance and Cross-correlation)

The covariance between Xt and Ys is called the (s− t)th
autocovariance of between the series Xt and Yt. Autocorrelation
coefficient, also called the serial correlation coefficient, measures
the correlation between Xt and Ys, so we have

(s− t)thAutocovariance = γX,Y (s, t) = Cov(Xs, Yt)

(s− t)thAutocorrelation = ρX,Y (s, t) =
Cov(Xs, Yt)√

Cov(Xs, Xs)Cov(Yt, Yt)
.

You can use ccf(x, y, lag.max = k) to see the first k
autocorrelations.

Note if ρX,Y (t, s) is around ±1, then we may hope for a linear
relationship Yt = β0 + β1Xs + εt.Kayvan Nejabati Zenouz MATH1180
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Stationary Time Series

Definition (Strictly Stationary and Stationary)

A strictly stationary time series is one for which the
probabilistic behaviour of every collection of values
{Xt1 , Xt2 , ..., Xtk} is identical to that of the time shifted set
{Xt1+h, Xt2+h, ..., Xtk+h} . If Xt is a stationary time series, then
for all t, the distribution of (Xt, Xt+1, ..., Xt+s) does not depend
on t.

If a times series is strictly stationary, then we have
γX(s, t) = γX(s+ h, t+ h).

Thus autocovariance function of the process depends
only on the time difference between s and t, and not on
the actual times.

A stationary series is roughly horizontal, constant
variance, no patterns predictable in the long-term.

Test for stationariness by adf.test() from tseries library.
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Trend

Assume time series Yt is being influenced by a collection of
possible inputs or independent series, say, X1,t, X2,t, ...., Xp,t.

We express this relation through the linear regression model

Yt = β0 +β1X1,t +β2X2,t + · · ·+ +βpXp,t + εt, εt ∼ iid(0, σ2).

At a basic level you may find the linear trend in the time
series by through a linear regression on time.

lm(mytsdata~time(mytsdata))

The residuals for the linear regression above are known as
the (linear) de-trended time series.

You may also want to create regression models with
lagged time series.

Kayvan Nejabati Zenouz MATH1180



194

Seasonality

If the times series has a seasonal (repeating) pattern i.e., is
of the form

Yt = Tt +A cos (2πωt+ φ) + +εt

where A is amplitude, ω is frequency, and φ phase difference.

Then we may like to understand the pattern in data. We
can work with the de-trended series i.e.,

Zt = Yt − Tt = A cos (2πωt+ φ) + εt

This can be written as

Zt = β1 cos (2πωt) + β2 sin (2πωt) + εt.

You can use the stl() function from forecast library to
decompose the times series into trend and seasonal
components.
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Autoregressive Moving Average

An autoregressive model relates a time series variable to
its past values.

An autoregressive model of order p, abbreviated AR(p), is of
the form Xt = φ1Xt−1 + φ2Xt−2 + · · ·+ φpXt−p + εt.

Example

First order AR(1) is given by Xt = φ1Xt−1 + εt. We have already
see a plot for Random Walk time series.

The moving average model of order q, or MA(q) model, is
defined to be Xt = εt + θ1εt−1 + θ2εt−2 + · · ·+ θqεt−q.

An autoregressive moving average with difference d written
as ARMA(p, d, q) is a combination of AR(p) and MA(q).

In R use auto.arima() function from forecast to fit
ARIMA(p, d, q).
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Forecasting

Once we have a suitable model for our times series, then we
can predict for future times.

This is known as forecasting.

In R you can use forecast() function from forecast in
order to do this.
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Summary

What we did today...

Time Series

Multiplicative and Additive
Decompsition

Seasonality, Trend, Error, Forecasting
Lags and Differences

Autocorrelation and Autocovariance
Stationary Time Series

Autoregressive Moving Average
Next Time

There won’t be any (revision)!
Thanks for Your Attention!

Have a good holiday!
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See You Next Time

Please Do Not Forget To

Ask any questions now or through my contact details.

Drop me comments and feedback relating to any
aspects of the course.

Come and see me during Student Drop-in Hours:
MONDAYS 12:00-13:00 (MATHS ARCADE) AND
TUESDAYS 15:00-16:00 (QM315).
Alternatively, email to make an appointment.

Thank You!

Kayvan Nejabati Zenouz MATH1180


	Contents
	Introduction
	References
	Topic 1: Review of Statistics and Probability
	Topic 2: Introduction to Random Variables
	Topic 3: Discrete and Continuous Random Variables
	Topic 4: Joint Distribution of Random Variables
	Topic 5: Pearson’s Correlation and Regression
	Topic 6: Approximations and Confidence Intervals
	Topic 7: Introduction to Time Series
	See You Next Time

