Linear Algebra Introduction to Vectors ${ }^{1}$

Kayvan Nejabati Zenouz ${ }^{2}$

University of Greenwich

$$
\text { April 10, } 2019
$$

"In these days the angel of topology and the devil of abstract algebra fight for the soul of every individual discipline of mathematics."

Hermann Weyl 1885-1955, Mathematician and Philosopher

[^0]Table of Contents
(1) Introduction
(2) Class Activity
(3) Vectors
(4) Examples
(5) Exercises
(6) Summary

Intended Learning Outcomes

By the end of this session you will be able to...

- Understand the basic concepts of linear algebra and vectors.
- Outline the rules governing operations on vectors.
- Investigate properties of vectors.
- Analysis examples of solving problems using vectors.

Linear Algebra

Question

What is linear algebra?

- Linear algebra arises from a need to solve systems of linear equations.

$$
\begin{aligned}
& x+y=2 \\
& x-y=0
\end{aligned}
$$

Algebraically

Geometrically

- Linear algebra plays an important role in many areas of pure and applied mathematics.
- Computers these days solve systems with thousands of linear equations every minute.

Class Activity

Please scan the barcode with your phone in order to take part in the class activity.

Code: 84448

Alternatively, go to www.menti.com on your electronic devices using the access code 84448.

What is a vector?

Think about the 2-dimensional space \mathbb{R}^{2}

What is a vector?

Think about the 3-dimensional space \mathbb{R}^{3}

Geometry: Intuition

- Many physical quantities, such as temperature and speed, possess only magnitude.
- These quantities can be represented by real numbers and are called scalars.
- Vectors have magnitude and direction.
- They are represented by tuples, for example,

$$
u=\left(\begin{array}{c}
-3 \\
2 \\
4
\end{array}\right), v=\left(\begin{array}{c}
4 \\
-2 \\
3
\end{array}\right) .
$$

Vector Addition

Algebraically the result of adding two vectors is component-wise addition. For example,
if

$$
a=\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right), b=\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right)
$$

then

$$
a+b=\left(\begin{array}{l}
a_{1}+b_{1} \\
a_{2}+b_{2} \\
a_{3}+b_{3}
\end{array}\right)
$$

Geometrically the result of adding two vectors is obtained by the parallelogram law.

Scalar Multiplication

Algebraically the result of multiplying a vector by a scalar λ is component-wise. For example,
if

$$
a=\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right)
$$

then

$$
\lambda a=\left(\begin{array}{c}
\lambda a_{1} \\
\lambda a_{2} \\
\lambda a_{3}
\end{array}\right)
$$

Geometrically the result of adding two vectors is obtained by scaling the vector, changing direction if $\lambda<0$.

Examples

n-dimensional Euclidean Space

For a natural number n let $\mathcal{V}=\mathbb{R}^{n}$ with addition and scalar multiplication

$$
\begin{aligned}
\left(u_{1}, u_{2}, \ldots, u_{n}\right)+\left(v_{1}, v_{2}, \ldots, v_{n}\right) & =\left(u_{1}+v_{1}, u_{2}+v_{2}, \ldots, u_{n}+v_{n}\right) \\
\lambda\left(u_{1}, u_{2}, \ldots, u_{n}\right) & =\left(\lambda u_{1}, \lambda u_{2}, \ldots, \lambda u_{n}\right), \\
\mathbf{0} & =(0,0, \ldots, 0) .
\end{aligned}
$$

In such case for $u=\left(u_{1}, u_{2}, \ldots, u_{n}\right)$ the vector \widetilde{u} such that $u+\widetilde{u}=\mathbf{0}$ is give by

$$
-u=\left(-u_{1},-u_{2}, \ldots,-u_{n}\right)
$$

Exercise

Let $u=(2,4,-5,1)$ and $v=(1,2,3,4)$. Find

$$
u+v, 3 v,-v, 2 u-3 v
$$

Algebra: Precision

General Vectors in \mathbb{R}^{n}

Vectors is \mathbb{R}^{n} form a set \mathcal{V}, with elements u, v, w, \ldots, together with addition + and a scalar multiplication so that

$$
u+v \in \mathcal{V} \text { and } \lambda u \in \mathcal{V} \text { for all } u, v \in \mathcal{V}, \lambda \in \mathbb{R}
$$

In addition, for any $u, v, w \in \mathcal{V}$ and $\lambda, \mu \in \mathbb{R}$ the following axioms are satisfied.

Group Axioms 1.
2.
3. There exists $\mathbf{0} \in \mathcal{V}$ such that $u+\mathbf{0}=u$
4. There exists $\widetilde{u} \in \mathcal{V}$ such that $u+\widetilde{u}=\mathbf{0}$
\widetilde{u} is denoted by $-u$
Scalar Axioms
5. $\lambda(u+v)=\lambda u+\lambda v$
6. $(\lambda+\mu) u=\lambda u+\mu u$
7. $\lambda(\mu u)=(\lambda \mu) u$
8. $\quad 1 u=u$

Exercises

Exercise

Two vectors $u=\left(u_{1}, u_{2}, \ldots, u_{n}\right)$ and $v=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ are equal if $u_{i}=v_{i}$ for every $i=1, \ldots, n$. Find x, y, z so that

$$
(x-y, x+z, z-1)=(1,2,3)
$$

Challenge Exercise (Function Spaces)

Let X be a set and $\mathrm{M}(X, \mathbb{R})$ the set of all functions $f: X \longrightarrow \mathbb{R}$ with addition and scalar multiplication

$$
\begin{aligned}
(f+g)(x) & =f(x)+g(x) \\
(\lambda f)(x) & =\lambda f(x) .
\end{aligned}
$$

Show $\mathrm{M}(X, \mathbb{R})$ satisfies the 8 axioms on slide 10 .

What we did today...

Linear algebra

Basics of vectors in \mathbb{R}^{n}

Vector axioms
History and applications

Basics of vectors in \mathbb{R}^{n}	History and applications
Vector axioms	Addition and scalar multiplication
Exercises	Euqality of vectors and examples
Next time	Go through them and we check solution
	Dot product and length of vectors

Please Do Not Forget To

- Ask any questions now or through my contact details.
- Drop me comments and feedback relating to any aspects of the course.
- My office hours are on Mondays 15:00-16:00 \& Fridays 11:00-12:00.
Alternative: open door policy or email to make an appointment.

Thank You!

[^0]: ${ }^{1}$ Online Version: www.nejabatiz.com/GUT.pdf
 ${ }^{2}$ Email: knejabati-zenouz@brookes.ac.uk, website: www.nejabatiz.com

