
MATH1166 Problem Solving and
Mathematical Thinking

Programming for Mathematics1

Kayvan Nejabati Zenouz2

University of Greenwich

April 27, 2020

“This, therefore, is Mathematics; she reminds you of the invisible form of the
soul; she gives life to her own discoveries; she awakens the mind and purifies

the intellect; she brings light to our intrinsic ideas...”

Proclus 414 - 485 AD

1
Use these notes in conjunction with Excel and Python demos.

2
Office: QM315, Email: K.NejabatiZenouz@greenwich.ac.uk,

Student Drop-in Hours: MONDAYS 12:00-13:00 (MATHS ARCADE) AND FRIDAYS
14:00-15:00 (QM315)

1

2

Contents

1 Introduction
Module Aims and Assessment
Topics to be Covered
Reading List and References

2 Week 5: Data and Visualisation with Excel
What is Excel?
Data Entry and Functions
Visualisation Methods
Tables and Pivots

3 Week 6: Introduction to Python 3
What is Python?
Installing and Running
Basic Programming and Mathematics
Interfaces for Python: IDLE, Jupyter,
Spyder
Packages: math, cmath, numpy

4 Week 7: Data Types, Methods, and
Programming

Code and Data
Data Types: int, str, bool, float, complex

Variables and Assignments
Collection of Data: tuple, list, set, dict

Logical and Comparison Operations
First Programme

5 Week 8: Conditional Statements and Loops

if, else, and elif Statements
for and while Loops
break and continue Statements

6 Week 9: Built-in and User-Defined Functions
Functions in Mathematics
Built-in Functions
User-Defined Functions
Python Anonymous Functions lambda

7 Week 10: Matrices, Dataframes, and Data
Manipulation

Matrices with numpy and sympy

Linear Algebra, Symbolic Mathematics,
Calculus, and Number Theory with sympy

Data Manipulation and Visualisation with
pandas

Import Data pandas.read_excel()

8 Week 11: Statistics and Visualisation
Methods

Statistics with scipy

Plotting with matplotlib

Interactive Plots with plotly

9 Week 12: Numerical Algorithms
Introduction to Numerical Analysis
Roots of Nonlinear Equations
The Bisection Method
Error for Bisection Method

Kayvan Nejabati Zenouz MATH1166

3

Lecture Contents

1 Introduction
Module Aims and Assessment
Topics to be Covered
Reading List and References

2 Week 5: Data and Visualisation with Excel
What is Excel?
Data Entry and Functions
Visualisation Methods
Tables and Pivots

3 Week 6: Introduction to Python 3
What is Python?
Installing and Running
Basic Programming and Mathematics
Interfaces for Python: IDLE, Jupyter,
Spyder
Packages: math, cmath, numpy

4 Week 7: Data Types, Methods, and
Programming

Code and Data
Data Types: int, str, bool, float, complex

Variables and Assignments
Collection of Data: tuple, list, set, dict

Logical and Comparison Operations
First Programme

5 Week 8: Conditional Statements and Loops

if, else, and elif Statements
for and while Loops
break and continue Statements

6 Week 9: Built-in and User-Defined Functions
Functions in Mathematics
Built-in Functions
User-Defined Functions
Python Anonymous Functions lambda

7 Week 10: Matrices, Dataframes, and Data
Manipulation

Matrices with numpy and sympy

Linear Algebra, Symbolic Mathematics,
Calculus, and Number Theory with sympy

Data Manipulation and Visualisation with
pandas

Import Data pandas.read_excel()

8 Week 11: Statistics and Visualisation
Methods

Statistics with scipy

Plotting with matplotlib

Interactive Plots with plotly

9 Week 12: Numerical Algorithms
Introduction to Numerical Analysis
Roots of Nonlinear Equations
The Bisection Method
Error for Bisection Method

Kayvan Nejabati Zenouz MATH1166

4

Introduction

Aims

The aim of this part of the module is to provide an overview of
modern computer skills essential for mathematicians. In
particular, by the end of this part you will be able to...

1 Manipulate data and produce graphics for visualisation
using Excel.

2 Learn programming with Python, data type, create
functions, control flow, manipulate data, and produce
visualisations.

3 Design programmes for solving mathematical problems
and data analysis.

Assessment

Computing Assignment (Electronic submission), weight 30%,
release 10/12/2019, due 06/02/2020.

Kayvan Nejabati Zenouz MATH1166

5

Introduction

Topics to be Covered...

1 Data and Visualisation with Excel

2 Introduction to Python 3

3 Data Types, Methods, and Programming

4 Conditional Statements and Loops

5 Built-in and User-Defined Functions

6 Matrices, Dataframes, and Data Manipulation

7 Statistics and Visualisation Methods

8 Numerical Algorithms

Guidance for Success

Attend Lectures, Engage with Tutorials, Ask Questions, Read
Books, Use Online Resources (Google, YouTube, etc...), Keep
Your Work Organised, and Always Ask for Help.

Kayvan Nejabati Zenouz MATH1166

6

Suggested Reading List and References

For reading list see Guerrero (2018); Alexander et al. (2018);
Kalb (2018); Summerfield (2008); Johansson (2015).

Alexander, M., R. Kusleika, and J. Walkenbach
2018. Excel 2019 Bible, Bible. Wiley.

Guerrero, H.
2018. Excel Data Analysis: Modeling and Simulation. Springer
International Publishing.

Johansson, R.
2015. Numerical Python: A Practical Techniques Approach for
Industry. Apress.

Kalb, I.
2018. Learn to Program with Python 3: A Step-by-Step Guide to
Programming. Apress.

Summerfield, M.
2008. Programming in Python 3: A Complete Introduction to the
Python Language. Pearson Education.

Kayvan Nejabati Zenouz MATH1166

7

Class Activity with www.menti.com

Please scan the barcode with your phone in order to take part
in the class activity.

https://www.menti.com/xt4nbvqhhu

Alternatively, go to www.menti.com on your electronic devices
and enter the access code 74 28 5.

Kayvan Nejabati Zenouz MATH1166

https://www.menti.com/xt4nbvqhhu
www.menti.com

Week 5
Data and Visualisation with Excel

sin(r)
r

8

9

Lecture Contents

1 Introduction
Module Aims and Assessment
Topics to be Covered
Reading List and References

2 Week 5: Data and Visualisation with Excel
What is Excel?
Data Entry and Functions
Visualisation Methods
Tables and Pivots

3 Week 6: Introduction to Python 3
What is Python?
Installing and Running
Basic Programming and Mathematics
Interfaces for Python: IDLE, Jupyter,
Spyder
Packages: math, cmath, numpy

4 Week 7: Data Types, Methods, and
Programming

Code and Data
Data Types: int, str, bool, float, complex

Variables and Assignments
Collection of Data: tuple, list, set, dict

Logical and Comparison Operations
First Programme

5 Week 8: Conditional Statements and Loops

if, else, and elif Statements
for and while Loops
break and continue Statements

6 Week 9: Built-in and User-Defined Functions
Functions in Mathematics
Built-in Functions
User-Defined Functions
Python Anonymous Functions lambda

7 Week 10: Matrices, Dataframes, and Data
Manipulation

Matrices with numpy and sympy

Linear Algebra, Symbolic Mathematics,
Calculus, and Number Theory with sympy

Data Manipulation and Visualisation with
pandas

Import Data pandas.read_excel()

8 Week 11: Statistics and Visualisation
Methods

Statistics with scipy

Plotting with matplotlib

Interactive Plots with plotly

9 Week 12: Numerical Algorithms
Introduction to Numerical Analysis
Roots of Nonlinear Equations
The Bisection Method
Error for Bisection Method

Kayvan Nejabati Zenouz MATH1166

10

Intended Learning Outcomes

By the end of this session you will be able to...

1 Understand the basic uses of Excel.

2 Create graphs of functions and visualise qualitative or
quantitative data.

3 Lean to modify the appearance of Excel graphics.

4 Produce summary tables from data.

Kayvan Nejabati Zenouz MATH1166

11

What is Excel?

Excel is spreadsheet software which is used for storage,
organisation, and analysis of tabular data.

First version was released by Microsoft in 1985 - it remains
the most popular among business applications used for

1 Number crunching: create budgets, tabulate expenses,
analyse survey results.

2 Creating graphics: customizable graphics and dashboards
for business/academic reports.

3 Data manipulation: preform complex calculations on data
as well as tools to manipulate text based data.

Remark 1: Why NOT Use Excel?

Unprecedented increase in data production has led
businesses to use open source fast performance programming
languages such as Python and R for visualisation and data
analysis.

Kayvan Nejabati Zenouz MATH1166

12

Excel Interface

We shall look at data entry, functions, graphics, and tables in
Excel.

Kayvan Nejabati Zenouz MATH1166

13

Data Entry and Functions

Data entry in the cells

Preform mathematical
operations on data

Use in-built functions
Click on “Formulae”

then “Insert Function”

Some In-Built Functions (here “=” means written as)

nx = n ∗ x, xn = x∧n, π = pi()

cos(x), ln(x), ex = exp(x),
√
x = sqrt(x), etc...

Kayvan Nejabati Zenouz MATH1166

14

Graphics

In many scenarios we would like to have a graphical
representation of data.

Graphics can summarise data in a way that tables, or
numerical values can never do.

First we need to think about what type of data we are
dealing with.

Quantitative Data

This is also refereed to as numerical data; it comes as
continuous or discrete.

Qualitative Data

This is also referred to as categorical data; it comes as binary,
nominal, or ordinal.

Kayvan Nejabati Zenouz MATH1166

15

Examples and Exercises

Example

Quantitative: weight or number of people in a room.

Qualitative: true/false, red/blue/yellow, or good/OK/bad.

Exercise 1: Research and Find

i More examples of quantitative and qualitative data.

ii Methods of visualisation for each quantitative and
qualitative data.

iii Meaning of exploratory and explanatory analysis.

Submit your findings in https://www.menti.com/xt4nbvqhhu.

Kayvan Nejabati Zenouz MATH1166

https://www.menti.com/xt4nbvqhhu

16

Quantitative Visualisation

There are three steps:

1. Select Range of Data

2. Go to Insert

3. Choose Scatter
Or Recommended Charts

Kayvan Nejabati Zenouz MATH1166

17

Quantitative Visualisation

Results:

The graph

Range of Data

Design your graph

Customise layout

Double Click on Axis

Kayvan Nejabati Zenouz MATH1166

18

Exercise 2:

Create exactly the following two graphs.

Enter Sales Data

Line graph
with title and axis

Bar graph
add Trednline

Kayvan Nejabati Zenouz MATH1166

19

Qualitative Visualisation: Tables

Suppose we have the following data.

1. Select Range of Data

2. Go to Insert

3. Choose Table

Read more on Guerrero 2018, Chapter 2 or Alexander et al.
2018, Part III.

Kayvan Nejabati Zenouz MATH1166

20

Qualitative Visualisation: Pivot Tables

We can create summary tables first and then use visualisation.

1. Table of Data

2. Click to Summarise
with Pivot Table
click OK

Kayvan Nejabati Zenouz MATH1166

21

Qualitative Visualisation: Pivot Tables

Results. Play around with options on the right hand side to
obtained desired tables.

Pivot Table of Data

Customise and choose

Kayvan Nejabati Zenouz MATH1166

22

Exercise 3:

Create the following pivot table and graphics.

Table of Data

Read more on Guerrero 2018, Chapter 4 or Alexander et al.
2018, Part IV.

Kayvan Nejabati Zenouz MATH1166

23

Important to Remember

Audience

Understand your audience and context. A graphics can be worth
a thousand words, or confusing if badly produced!

Research

Choose visuals carefully, compare several and go for the best, or
learn from experts through prior research.

Clutter and Design

Avoid clutter: remember sometimes less is more. Design your
graphics professionally. Avoid using pie charts, doughnut charts,
or 3D bar charts.

Storytelling

Think about your audience and what you want them to see.
Accompany graphics with a brief story of what they show.

Kayvan Nejabati Zenouz MATH1166

24

Summary

What we did today...

Basics of Excel

History and applications
Data

Types and visualisations
Do’s and Dont’s

Remember them
Exercises

Go through and check solutions
Need Help?

Email me or ask me any questions
Next Time

Python 3 ♥♥♥

Kayvan Nejabati Zenouz MATH1166

Week 6
Introduction to Python 3

Python 3: Fibonacci Series up to n

def fib(n):

a, b = 0, 1

while a < n:

print(a, end=’ ’)

a, b = b, a+b

fib(1000)

0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987

25

26

Lecture Contents

1 Introduction
Module Aims and Assessment
Topics to be Covered
Reading List and References

2 Week 5: Data and Visualisation with Excel
What is Excel?
Data Entry and Functions
Visualisation Methods
Tables and Pivots

3 Week 6: Introduction to Python 3
What is Python?
Installing and Running
Basic Programming and Mathematics
Interfaces for Python: IDLE, Jupyter,
Spyder
Packages: math, cmath, numpy

4 Week 7: Data Types, Methods, and
Programming

Code and Data
Data Types: int, str, bool, float, complex

Variables and Assignments
Collection of Data: tuple, list, set, dict

Logical and Comparison Operations
First Programme

5 Week 8: Conditional Statements and Loops

if, else, and elif Statements
for and while Loops
break and continue Statements

6 Week 9: Built-in and User-Defined Functions
Functions in Mathematics
Built-in Functions
User-Defined Functions
Python Anonymous Functions lambda

7 Week 10: Matrices, Dataframes, and Data
Manipulation

Matrices with numpy and sympy

Linear Algebra, Symbolic Mathematics,
Calculus, and Number Theory with sympy

Data Manipulation and Visualisation with
pandas

Import Data pandas.read_excel()

8 Week 11: Statistics and Visualisation
Methods

Statistics with scipy

Plotting with matplotlib

Interactive Plots with plotly

9 Week 12: Numerical Algorithms
Introduction to Numerical Analysis
Roots of Nonlinear Equations
The Bisection Method
Error for Bisection Method

Kayvan Nejabati Zenouz MATH1166

27

Intended Learning Outcomes

By the end of this session you will be able to...

1 Understand what Python is as a programming language.

2 Learn how to install and work with different interfaces of
Python.

3 Preform basic operations and mathematical calculations.

4 Learn about Python packages and how to use some of them.

Kayvan Nejabati Zenouz MATH1166

28

What is Python?

Python is an Object-Oriented, General Purpose,
Interpreted, programming language.

It was created in 1990s by Guido van Rossum, and it has
become the easiest-to-learn and nicest-to-use
programming language.

Python is used to write applications to solve problems in
mathematics, numerical and financial analysis,
neurosciences, biology, and many others areas
https://www.youtube.com/watch?v=hxGB7LU4i1I.

It remains the top choice of language for data science in
industry alongside the more statistical language R.

After learning Python it will be easier to learn other
programming languages.

Kayvan Nejabati Zenouz MATH1166

https://www.youtube.com/watch?v=hxGB7LU4i1I

29

Class Activity

Exercise 1: Research to Find Definition and Example

i An algorithm

ii A computer programme

iii Programming language (including higher/lower)

iv General Purpose language

v Object-Oriented programming

vi Interpreted and Compiled programming language

Submit your findings in https://www.menti.com/sdoiiq8pes.

Kayvan Nejabati Zenouz MATH1166

https://www.menti.com/sdoiiq8pes

30

How to Get Python?

Getting Python

Python is open source, freely available, from

www.python.org
there are two versions: old Python 2 and new Python 3. We will
learn Python 3.

Online Documentations

The above website also contains vast amount of information
about Python and should be your first point of contact. For
example, go to Tutorial on

https://docs.python.org/3

Remark 1: Google Everything!

Remember programming and Googling go hand in hand.
Make sure you use the extensive online resources available.

Kayvan Nejabati Zenouz MATH1166

https://www.python.org/
https://docs.python.org/3/

31

Python

Once installed, open a Python shell, type python in the
Command Prompt (Windows) or Terminal (MAC/Linux).
Or click on any Python icon you find on your system.

Write python

Test Python

Use as Calculator

To close
type quit()

Kayvan Nejabati Zenouz MATH1166

32

Basic Programming

A programme is set of instructions asking a computer to
preform a task.

It is a way of speaking to machines and you need to be
precise, logical, and understand the rules of each
language carefully.

Computer reads your programme in the order of appearance.
For example, the code print("Hello World") produces

>>> print("Hello World!")

Hello World!

Function print is used to tell Python to display an output.
Note, Python functions are case sensitive!

>>> Print("Hello World!")

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

NameError: name ’Print’ is not defined

Kayvan Nejabati Zenouz MATH1166

33

Indentation and Comments

Remark 2: Indentation Matters in Python!

Indentation of code helps with the readability of programmes,
but will produce errors if used incorrectly!

>>> print("Hello World!")

Hello World!

>>> print("Hello World!")

File "<stdin>", line 1

print("Hello World!")

^

IndentationError: unexpected indent

Remark 3: Always Comment Your Code!

Anything that comes after a # will not be executed by Python,
so you can use this to comment you codes

>>> print("Hello World!") # This will print

Hello World!

Kayvan Nejabati Zenouz MATH1166

34

Basic Mathematics

You can use Python as a calculator with operations

+, −, ∗, /, ∗∗

for addition, subtraction, multiplication, division, and

exponentiation. For example,
(
(2+5)×5

10

)2
is written

>>> ((2+5)*5/10)**2

12.25

The order of mathematical operations follows PEMDAS:

1 Parentheses
2 Exponents
3 Multiplication
4 Division
5 Addition
6 Subtraction

Kayvan Nejabati Zenouz MATH1166

35

Exercise 2: Research - Interfaces for Python

Find from internet if you can get Python 3 on your phone,
or smart devices.

Find suitable online Python Compilers, e.g.,
https://www.tutorialspoint.com/execute python online.php.

Type the following codes to see what you get.

1 print("Hello World")

2 2+2

3 print(2+2)

4 print("2+2")

5 print(’2+2’)

6 # print("2+2")

7 x=2

8 x+2

9 help(print)

10 Hello World

Write the code on first slide of this session (slide 25).

Kayvan Nejabati Zenouz MATH1166

https://www.tutorialspoint.com/execute_python_online.php

36

Interfaces for Python and IDLE

Programming in the terminal can be difficult and time
consuming. For this reason Python programmers often use user
friendly interfaces and scientific distributions.

IDLE

The Integrated Development and Learning Environment (IDLE)
for Python offers many features; for example, ability to save
codes, code colouring, smart indent, auto completion,
interactivity, debugger, and many others.

Anaconda

Another way to get access to Python interfaces is through
scientific distribution Anaconda, available from

www.anaconda.com
already equipped with many packages and interfaces such as
Spyder, Jupyter, JupyterLab.

Kayvan Nejabati Zenouz MATH1166

https://www.anaconda.com/distribution/

37

IDLE

IDLE interface comes with Python installation.

Code colouring

Smart indent

Auto completion

Kayvan Nejabati Zenouz MATH1166

38

IDLE

You can save your code by creating a .py file by going to File
and selecting New File.

Write code and save

From Run choose

Run Module

Results

Kayvan Nejabati Zenouz MATH1166

39

Anaconda Interface

Anaconda Navigator

Jupyter

Spyder

Kayvan Nejabati Zenouz MATH1166

40

Spyder

Spyder www.spyder-ide.org is a scientific environment in
Python. You can access it through Anaconda.

It has advanced features for editing, analysis, debugging,
interactive execution, and beautiful visualisation
capabilities. You can add Notebook and Reports.

Write script

Documentation

Console

Kayvan Nejabati Zenouz MATH1166

https://www.spyder-ide.org/

41

Jupyter(Lab)

Jupyter(Lab) www.jupyter.org is an interactive
development environment.

Jupyter(Lab) opens in a browser and allows to write code,
text, and mathematics in the same script to produce
interactive documents.

Script

Text

Python code

For mathematics
write $$ x+ y $$

or $ x+ y $

Kayvan Nejabati Zenouz MATH1166

https://jupyter.org/

42

Accessing Python using UoG Technology

While at the University of Greenwich you should be able
to access Python and Anaconda on most computers.

Alternatively you can also get access to them through
Virtual Lab Desktop.

Find instructions on how to use Virtual Lab Desktop on
http://ach-support.gre.ac.uk/labdesktop/.

You can install this at home or on a tablet, phone or
other device, following these instructions.

Kayvan Nejabati Zenouz MATH1166

http://ach-support.gre.ac.uk/labdesktop/

43

Packages for Python

No all the tools that programmers need are already built
into Python.

Packages, Modules, and Libraries increase the
functionality of Python by offering tools useful for
particular tasks.

Some packages already exist in Python (for example pip,
math, statistics, etc...) and some need to be installed.

To load an existing package use import in Python

>>> import <package-name>

To install3 use pip in the terminal

$> pip install <package-name>

To update a package to the latest version use

$> pip install -U <package-name>
3
Anything starting with a $ is to be executed in Command (Anaconda)

Prompt/Terminal. All other codes, and those with >>>, to be executed in Python.

Kayvan Nejabati Zenouz MATH1166

44

Packages for Anaconda

Anaconda

Has many packages already installed.

You can update Anaconda by running

$> conda update conda

You can install a package by

$> conda install <package-name>

You can update a package by

$> conda update <package-name>

You can update all packages by

$> conda update --all

Finally to remove a package use

$> conda remove <package-name>

Kayvan Nejabati Zenouz MATH1166

45

Exercise 3: Playing with numpy

NumPy provides multidimensional arrays functions to operate on
arrays. To load type

import numpy

Figure out what the following lines of code do.

1 a = numpy.array([[6, 7, 8],[1, 2, 3]])

2 a

3 a.shape

4 a.ndim

5 a.size

6 type(a)

7 numpy.arange(15).reshape(3, 5)

8 numpy.zeros((3,4))

You can load a package and give it a different name.

import numpy as np

a = np.array([[6, 7, 8],[1, 2, 3]])

Kayvan Nejabati Zenouz MATH1166

46

Useful Packages

Some useful and well-known packages of Python which we shall
learn about.

1 NumPy www.numpy.org operation on data stored in arrays,
linear algebra, Fourier transform, and random number.

2 SymPy www.sympy.org is used for symbolic mathematics,
calculus, and number theory.

3 Pandas www.pandas.pydata.org provides high-performance,
easy-to-use data structures and data analysis tools.

4 SciPy www.scipy.org mathematics, statistics, science, and
engineering, integration, differentiation, gradient
optimization.

5 Matplotlib www.matplotlib.org is a Python 2D plotting
library which produces publication quality figures.

6 Ployly www.plot.ly/python Plotly’s Python graphing
library makes interactive, publication-quality graphs.

Kayvan Nejabati Zenouz MATH1166

https://www.numpy.org/
https://www.sympy.org/en/index.html
https://pandas.pydata.org/index.html
https://www.scipy.org/
https://matplotlib.org/
https://plot.ly/python/

47

Useful Packages

More sophisticated well-known packages of Python.

1 Scikit-learn www.scikit-learn.org/stable simple and
efficient tools for data mining and data analysis.

2 Theano www.deeplearning.net/software/theano, define,
optimize, and evaluate mathematical expressions involving
multi-dimensional arrays efficiently.

3 Beautiful Soup www.crummy.com/software/BeautifulSoup
Pythonic idioms for navigating, searching, and modifying a
parse tree in HTML for extracting data from the web.

4 Seaborn www.seaborn.pydata.org/ data visualization
library based on matplotlib. It provides a high-level interface
for drawing attractive and informative statistical graphics.

Kayvan Nejabati Zenouz MATH1166

https://scikit-learn.org/stable/
http://deeplearning.net/software/theano/index.html
https://www.crummy.com/software/BeautifulSoup/
https://seaborn.pydata.org/

48

Summary

What we did today...

Programming

Object-Oriented
Basics of Python

History, applications, packages
Interfaces

IDLE, Spyder, JupyterLab
Error and Basic Operations

Case sensitive, indentation, comments
Mathematical Operation and Packages

Order of operations
Next Time

Data Types, Methods, Programming

Kayvan Nejabati Zenouz MATH1166

Week 7
Data Types, Methods, and Programming

Keywords in Python

False | class | finally | is | return

None | continue | for | lambda| try

True | in | nonlocal | while | raise

and | del | global | not | with

as | elif | if | or | yield

assert | else | import | pass

break | except | def from

49

50

Lecture Contents

1 Introduction
Module Aims and Assessment
Topics to be Covered
Reading List and References

2 Week 5: Data and Visualisation with Excel
What is Excel?
Data Entry and Functions
Visualisation Methods
Tables and Pivots

3 Week 6: Introduction to Python 3
What is Python?
Installing and Running
Basic Programming and Mathematics
Interfaces for Python: IDLE, Jupyter,
Spyder
Packages: math, cmath, numpy

4 Week 7: Data Types, Methods, and
Programming

Code and Data
Data Types: int, str, bool, float, complex

Variables and Assignments
Collection of Data: tuple, list, set, dict

Logical and Comparison Operations
First Programme

5 Week 8: Conditional Statements and Loops

if, else, and elif Statements
for and while Loops
break and continue Statements

6 Week 9: Built-in and User-Defined Functions
Functions in Mathematics
Built-in Functions
User-Defined Functions
Python Anonymous Functions lambda

7 Week 10: Matrices, Dataframes, and Data
Manipulation

Matrices with numpy and sympy

Linear Algebra, Symbolic Mathematics,
Calculus, and Number Theory with sympy

Data Manipulation and Visualisation with
pandas

Import Data pandas.read_excel()

8 Week 11: Statistics and Visualisation
Methods

Statistics with scipy

Plotting with matplotlib

Interactive Plots with plotly

9 Week 12: Numerical Algorithms
Introduction to Numerical Analysis
Roots of Nonlinear Equations
The Bisection Method
Error for Bisection Method

Kayvan Nejabati Zenouz MATH1166

51

Intended Learning Outcomes

By the end of this session you will be able to...

1 Understand different data types - integer, floats, strings,
Boolean, and methods.

2 Learn about variables, assignment statements, conventions,
and keywords.

3 Manipulate different data collection types - tuples, lists,
sets, dictionaries, and ranges.

4 Learn about logical and comparison operations.

5 Apply the concepts learnt to write and test Python
programmes.

Kayvan Nejabati Zenouz MATH1166

52

Introduction

Last Week

We learnt how to use Python with different interfaces and played
around with codes and packages.

Think about what we learnt last week: choices for
programming in Python; mathematical operators and their
order in Python; print function; and packages and answer
questions in https://www.menti.com/im5r1bitpb.

This Week

We look at more technical aspects of programming and
how to use Python.

This is very useful as you will develop a concrete knowledge
of programming which will remain with you as when
learning other languages.

You will research and programme during the session through
exercises in order to gain a fully proficiency of the concepts.

Kayvan Nejabati Zenouz MATH1166

https://www.menti.com/im5r1bitpb

53

Building Blocks of Programming

Code and Data
The main building blocks of programming are code and
data.

Code (or method) is a set of instructions that tell the
computer what to perform and how it should perform.
Data refers to the quantities, characters, and/or symbols
on which operations are performed. Anything the computer
needs to remember is a piece of data.

RAM and CPU
Inside a computer...

Ready programme is loaded into RAM, random access
memory.
The CPU, central processing unit, executes the
instructions of the programme.
Instructions usually boil down to load data, preform
arithmetic, make comparisons, and store data.

Kayvan Nejabati Zenouz MATH1166

54

Data Types

Example (Data)

Number of students in class

Examination marks average

Name of students

Whether a switch is in an on or off position

Solutions of the equation x2 + 1 = 0

Question

What is the difference between the data in the examples above?

Kayvan Nejabati Zenouz MATH1166

55

Types of Data

In we shall look at four main types.

Integers numbers (integers) are counting numbers, like 1, 2,
3, but also include 0 and negative numbers, e.g., number of
people in a room.
Floating-point numbers (floats) are numbers that have a
decimal point in them, e.g., price of beard; irrational
numbers.
Strings (text) are any sequences of characters e.g., name,
address.
Booleans are a type of data that can only have one of two
values: True or False, e.g., the state of a light switch: True
for on, False for off.

Remark 1:

1 Integers seem to be included in floats, but computer has
easier time dealing with integers than floats!

2 There are many types of data for example MP3, JPG, PDF.

Kayvan Nejabati Zenouz MATH1166

56

Type Function

You can use the function type() to determine the type of data.

Exercise 1: Research and Find

i Five examples for each of the four data type integers, floats,
strings, and Booleans.

ii Suppose you are required to create the following table in
Python

Receipt of Purchase

Name: · · · · · · · · · · · · · · ·
Date of Birth: · · · · · · · · · · · · · · ·

Address: · · · · · · · · · · · · · · ·
Phone Number: · · · · · · · · · · · · · · ·

Number of Items: · · · · · · · · · · · · · · ·
Total Price: · · · · · · · · · · · · · · ·

Deposite Paid? · · · · · · · · · · · · · · ·
what data type does each row belong to?

Kayvan Nejabati Zenouz MATH1166

57

Variables and Assignment Statements

Variables are used in order to store and manipulate data.
A variable is a named memory location that holds a value.

Memory locations in RAM can used as a variable.
Different types of data take up different amount of memory.

For example, when you play a computer game a variable
is created which holds your score at each point in time.

An assignment statement is a line of code in which a
variable is given a value. It has the general form

<variable> = <expression>

Below variables on the left of = are assigned the values on
the right of ”=” sign

age = 29

name = ’Fred’

alive = True

gpa = 3.9

Note that ”=” sign is called the assignment operator.

Kayvan Nejabati Zenouz MATH1166

58

Variable Names

Names and Rules

By definition all variables must have a name. There are some
rules governing this.

Must start with a letter (or an underscore).

Cannot start with a digit or be a keyword.

Can have up to 256 total characters.

Can include letters, digits, underscores, dollar signs, and
other characters.

Cannot contain spaces or maths symbols (+, −, /, ∗, %,
parentheses).

For example you can have numberOfFishInAquarium, but not
49ers, table+chairs, my age, import, or (coins).

Python converts your code into a language of ones and zeros, when the
compiler reads your code, it looks for special words called keywords to
understand what your code is trying to say.

Kayvan Nejabati Zenouz MATH1166

59

Collection of Data

Sometimes we would like to hold a collections of data
items, sets/vectors of objects, rather than variables.
This is done through various methods, Sequence, Sets, and
Mapping types.
These Sequence Operations (Methods), for example
membership in and length len().

Tuples

A tuple is an ordered sequence of zero or more object
references. You can create a tuple by separating items with
commas (and round brackets), for example,

t=("venus", -28, "gre", "21", 19.74, "-28")

It is easy to extract items from a tuple, but we cannot
replace or delete any of their items (immutable).

The code x in t is a sequence operation which results in
True if an item of t is equal to x and False otherwise.

Kayvan Nejabati Zenouz MATH1166

60

Sequence Types

Exercise 2: Research and Find

Common sequence operations valid for tuples and write them
with definition on https://www.menti.com/im5r1bitpb. Hint: You may

use the Python Library Reference https://docs.python.org/3.

Lists

A list is an ordered sequence of zero or more object references.
You can create a list by separating items with commas and
square brackets, for example,

L=[-17.5, "kilo", ("ram", 5, "echo"), 7]

It is easy to extract items from a list, and we can replace
and delete any of their items (mutable).

It is also possible to insert, replace, and delete slices of lists.

There are many methods for lists, e.g., L.append(x)
appends item x to the end of list L.

Kayvan Nejabati Zenouz MATH1166

https://www.menti.com/im5r1bitpb
https://docs.python.org/3/

61

Sets Types

Exercise 3: Research and Find

Methods (sequence operations) for mutable sequence types and
write them with definition on https://www.menti.com/im5r1bitpb.

Sets

A set is an unordered collection object references that refer to
hashablea objects. You can create a set by separating items
with commas and curly brackets, for example,

S={7, "veil", 0, ("x", 11), frozenset([8, -4, 7]),

"sun"}

Sets are mutable, so we can easily add or remove items.

Since they are unordered, no notion of index position, and
so cannot be sliced strided.

Usual set operations: | union, & intersection, - set
difference, ^ symmetric difference.

a
All of Python’s immutable built-in objects are hashable, while no mutable containers (such

as lists or dictionaries) are.

Kayvan Nejabati Zenouz MATH1166

https://www.menti.com/im5r1bitpb

62

Mapping Types

Dictionaries

A dict is an unordered collection of zero or more key–value
pairs whose keys are object references that refer to hashable
objects, and whose values are object references referring to
objects of any type. For example, if you want to keep data for a
customer’s Name: George, Age: 29, and Sex: Male, you can use

C=dict({"Name":"George", "Age":29, "Sex":"Male"})

Dictionaries are mutable, so we can easily add or remove
items

They are unordered, like sets, so no notion of index position
and cannot be sliced or strided.

There are several ways of creating dictionaries.

You can use the usual set operations.

Kayvan Nejabati Zenouz MATH1166

63

Logical Operations

We can test objects for truth. For example, testing if x
belongs to a set S or two objects are the same.

By default, an object is considered True unless its class
defines either a boolean method that returns False or a has
length 0. Truth can be tested using bool().

Some built-in objects considered false:

Constants defined to be false: None and False.
Zero of any numeric type: 0, 0.0, 0j, Decimal(0),
Fraction(0, 1).
Empty sequences and collections: ’’, (), [], set(),
range(0).

Testing for truth is important when using if or while
statements (i.e., doing something if/while something is true).

Kayvan Nejabati Zenouz MATH1166

64

Logical Operators

Python has four types logical operators.

The Boolean Operations are and, or, not; for example,

0 or 1

"Ali" and 2

not 1

They word as follows

x or y if x is false, then y, else x

x and y if x is false, then x, else y

not x if x is false, then True, else False

The Comparison operators are <, <=, >, >=, ==, !=, is,
is not.

Exercise 4: Research

Find and discuss what each of the comparison operators mean.

Kayvan Nejabati Zenouz MATH1166

65

First Programme

Having understood the basics of Python, we can now start
creating computer programmes.

To Write a Programme We Need To

1 Have a problem and we need to state it as clearly as
possible.

2 Determine what the input is, i.e., what information is given.

3 Know how to solve the problem theoretically, by hand,
and for simple examples.

4 Decide what the output should be.

5 Write the script that allows for the input, preforms
calculation, and returns output.

6 Test the script on several examples and check for efficiency.

Kayvan Nejabati Zenouz MATH1166

66

Example

Problem

Write a programme which solves any quadratic equation with
real coefficient and returns two solutions.

Programme Steps 1, 2, 3, 4

1 Find the solutions for any equation

ax2 + bx+ c = 0 where a 6= 0.

2 Input is real numbers a, b, c, with a 6= 0.
3 Solve by hand

ax2 + bx+ c = 0 =⇒ x2 +
b

a
x+

c

a
= 0 =⇒

x2 + 2
b

2a
x+

b2

4a2
−

b2

4a2
+

c

a
= 0 =⇒

(
x+

b

2a

)2

=
b2

4a2
−

c

a

=⇒ x−
b

2a
= ±
√
b2 − 4ac

2a
=⇒ x1 =

−b+
√
b2 − 4ac

2a
, x2 =

−b−
√
b2 − 4ac

2a
.

4 Output should be x1 and x2.

Kayvan Nejabati Zenouz MATH1166

67

Example Cont. I Programme Step 5

Following is the first attempt at creating the script.

1 # Input, you can change these and rerun.

2 a=1;b=1;c=0

3

4 # Here we do the calculations.

5 import math # For taking square root

6 # we need to import the package math

7 delta=b**2-4*a*c

8 firstSolution=(-b+math.sqrt(delta))/2*a

9 secondSolution=(-b-math.sqrt(delta))/2*a

10

11 # Use print function to display output

12 print("The first solution is", firstSolution, "and

the second solution", secondSolution)

Kayvan Nejabati Zenouz MATH1166

68

Example Cont. II

Programme Step 6

Test the script for following values and make sure you get the
correct solution.

No

Values
a b c

1 1 1 0
2 2 3 0
3 0.5 3 3
4 2 1 1
5 ”x” 1 1

Record any issues and find a way to fix them. Test more if
necessary!

Kayvan Nejabati Zenouz MATH1166

69

Example Cont. III

Programme Steps 6 Cont.

1 Fine.

2 Returns The first solution is 0.0 and The second

solution -6.0, the correct solution is x1 = 0 and x2 = 1.5.
Fix: in lines 8 and 9 of the code we need to have 2*a in
bracket, i.e., (2*a).

3 Fine.

4 Returns error, here the solutions are imaginary, but
math.sqrt cannot take the square root of an imaginary
number. Fix: use the cmath in line 7 package together with
cmath.sqrt in line 8 and 9.

5 Returns error - correctly as the input is not a float number.

Kayvan Nejabati Zenouz MATH1166

70

Example Cont. IV Programme Final Version

Following is the second attempt at the script after testing.

1 # Input, you can change these and rerun.

2 a=1;b=1;c=0

3

4 # Here we do the calculations.

5 # For taking square root we need cmath

6 import cmath

7 delta=b**2-4*a*c

8 firstSolution=(-b+cmath.sqrt(delta))/(2*a)

9 secondSolution=(-b-cmath.sqrt(delta))/(2*a)

10

11 # Use print function to display output

12 print("The first solution is", firstSolution, "and the second

solution is", secondSolution)

Question

What if we wanted the programme to request for the input?

Kayvan Nejabati Zenouz MATH1166

71

Example Cont. IV: Alternative Script

Programme Using input() Function.

1 # Start by input

2 a=float(input("Enter a Non-Zero Real Number for a:"))

3 # Use the input function to ask for a, b, c.

4 b=float(input("Enter a Real Number for b:"))

5 # It is useful to have type float,

6 c=float(input("Enter a Real Number for c:"))

7 # so upon entrance turn the input into float.

8

9 # Here we do the calculations.

10 import cmath # For taking square root

11 delta=b**2-4*a*c

12 firstSolution=(-b+cmath.sqrt(delta))/(2*a)

13 secondSolution=(-b-cmath.sqrt(delta))/(2*a)

14

15 # Finally use print function to display output

16 print("The first solution is", firstSolution, "and the second

solution is", secondSolution)

Kayvan Nejabati Zenouz MATH1166

72

Exercise 5: Straight-Line Distance

Write a programme to compute the straight-line distance
between two points in a plane up to 3 decimal places.

(x1, y1)

(x2, y2)
d

x

y

Kayvan Nejabati Zenouz MATH1166

73

Summary

What we did today...

Data Types

int, float, str, bool, complex, ...
Variables

Assignment statement and rules
Collection of Data

tuple(), list(), set(), dict()
Logical and Comparison

and, or, not, in, is, <, ==, >=, !=
First Programme

State, input, solve, output, script, test
Next Time

Conditional Statements and Loops

Kayvan Nejabati Zenouz MATH1166

Week 8
Conditional Statements and Loops

a=int(input("Enter an integer"))

while a<10:

for i in range(1,10,a):

if i%3==0:

print(i,"is divisible by 3")

elif i%5!=0 and i%2!=0:

print(i, "is not divisible by 5 and 2")

else:

print(i, "is not divisible by 3, but can be

divisible by other primes")

a=a+1

else:

print("End of a complicated and very strange while, for,

if statement!")

74

75

Lecture Contents

1 Introduction
Module Aims and Assessment
Topics to be Covered
Reading List and References

2 Week 5: Data and Visualisation with Excel
What is Excel?
Data Entry and Functions
Visualisation Methods
Tables and Pivots

3 Week 6: Introduction to Python 3
What is Python?
Installing and Running
Basic Programming and Mathematics
Interfaces for Python: IDLE, Jupyter,
Spyder
Packages: math, cmath, numpy

4 Week 7: Data Types, Methods, and
Programming

Code and Data
Data Types: int, str, bool, float, complex

Variables and Assignments
Collection of Data: tuple, list, set, dict

Logical and Comparison Operations
First Programme

5 Week 8: Conditional Statements and Loops

if, else, and elif Statements
for and while Loops
break and continue Statements

6 Week 9: Built-in and User-Defined Functions
Functions in Mathematics
Built-in Functions
User-Defined Functions
Python Anonymous Functions lambda

7 Week 10: Matrices, Dataframes, and Data
Manipulation

Matrices with numpy and sympy

Linear Algebra, Symbolic Mathematics,
Calculus, and Number Theory with sympy

Data Manipulation and Visualisation with
pandas

Import Data pandas.read_excel()

8 Week 11: Statistics and Visualisation
Methods

Statistics with scipy

Plotting with matplotlib

Interactive Plots with plotly

9 Week 12: Numerical Algorithms
Introduction to Numerical Analysis
Roots of Nonlinear Equations
The Bisection Method
Error for Bisection Method

Kayvan Nejabati Zenouz MATH1166

76

Intended Learning Outcomes

By the end of this session you will be able to...

1 Learn to uses conditional statements and loops.

2 Construct control flows using if, else, and elif

statements.

3 Create loops using for and while.

4 Understand how to use break and continue statements.

Kayvan Nejabati Zenouz MATH1166

77

Introduction

Last week we create programmes where individual
commands would be executed line after line.

Statment

Statment

Statment

This week we will be looking at diverting control, e.g., ”If
today is Monday, then I will go to work”, or ”while I am
hungry, I will eat”.
There are two main ways of doing this:

Conditional statements with if, else, and elif using bool

data types, e.g., Comparison and Logical Operators.
Loops with for and while using range, list, and bool.

Flow charts, representation of all the possible paths
through a process, are used to visualise conditional
statements and loops.

Kayvan Nejabati Zenouz MATH1166

78

if statement

The if statement is used to divert a flow depending on a bool

type data, i.e., depending on True or False preform different
actions.

Statment

if condition
<Boolean>

body of if
<Do Something>

Statment

...

Condition False

Condition True

Kayvan Nejabati Zenouz MATH1166

79

Python Simple if Statement

The general expression for if statement is as follows.

if <Boolean expression>: # True/False

condition followed by colon

<indented block of code>

Any number of indented lines

Example 1

Cond=True # Statment

if Cond: # True condition

print("Condition was", Cond)

Example 2

x=float(input("Enter a number")) # Statment

if x>=0: # True/False condition

print(x, "is a non-negative number")

print(x, "plus 10 is equal to", x+10)

Kayvan Nejabati Zenouz MATH1166

80

Simple if Statement

Exercise 1:

1 Create variables which keeps the score for each of you and
your friend in a game. Write a code which prints

I Win

if your score is higher than your friend’s.

2 Write a code takes a number x and if it is non-zero it prints

A non-zero number

also returns 1/x.

3 Write a code takes a number x check if it is odd, prints

Odd number

for odd numbers checks if x3 is greater than 100 prints

A large number

and returns ln(x) for these. Hint: you may need to use if statement

within another if statement, nested statements.

Kayvan Nejabati Zenouz MATH1166

81

if and else Statements

In many occasions you may need to preform two operations
depending on a condition being true or false.

Statment

if condition
<Boolean>

body of if
<Do Something>

body of else
<Do Other>

Statment

...

Condition True Condition False

Kayvan Nejabati Zenouz MATH1166

82

Python if and else Statements

The general expression for if and else statement is as follows.

if <Boolean expression>: # True/False

condition followed by colon

<indented block of code>

some number of indented lines

else: # else followed by colon

<indented block of code>

other number of indented lines

Example

Cond=input("Choose True or False") # Statment

if Cond: # True condition

print("Condition you chose was", Cond)

else:

print("Condition you chose was", Cond)

Kayvan Nejabati Zenouz MATH1166

83

if and elif Statements

Sometimes we have more than two operations to preform. In this
case we use elif statements.

if <Boolean expression>: # True/False

condition followed by colon

<indented block of code>

some number of indented lines

elif <Boolean expression>:

else if followed by colon

<indented block of code>

other number of indented lines

elif <Boolean expression>:

more else if followed by colon

<indented block of code>

more number of indented lines

as many elif as you may need....

else:

<indented block of code>

default number of indented lines

Kayvan Nejabati Zenouz MATH1166

84

Example if and elif Statements

A code which classifies your degree type according to the final
mark.

mark=float(input("Enter final mark"))

if mark>=70:

print("First Class")

elif mark>=60:

print("2.1")

print("Mark is", 70-mark, "away from a first")

elif mark>=50:

print("2.2")

elif mark>=40:

print("Pass")

else:

print("May need to resit some modules.")

Kayvan Nejabati Zenouz MATH1166

85

if and elif Statements

Exercise 2:

1 Write a code which asks for the age of the universe and if
the correct answer is provided prints

Correct, Well done!

and if the wrong answer is provided prints

Unfortunately that is incorrect!

2 Write a code which asks for temperature and rainy/sunny
and prints the following.
If temperature is greater than 20 and sunny
Nice and worm day.

If temperature is greater than 10 and sunny
Sunny but chilly.

If temperature is greater than 20 and rainy
worn but rainy.

Otherwise Good luck with the weather today!

Kayvan Nejabati Zenouz MATH1166

86

for Loop

A for loop changes the flow to repeat a statement for each item
in a given sequence.

Statment

for var in seq
Statement

Statement

Statement

Statment

...

Repeat

Kayvan Nejabati Zenouz MATH1166

87

Python for Statements

The general expression for for statement is as follows.

for var in collectiontype: # for with

range/tuple/list/set followed by colon

<indented block of code> # some number of

indented lines to be

preformed for each item

Example 1

for i in range(2,20,3):

print(i)

print(i, "squared is", i*i)

Example 2

for i in "Kayvan":

print(i)

Example 3

for i in ("1", "sunny", "day", "2.16"):

print(len(i))

Kayvan Nejabati Zenouz MATH1166

88

while Loop

A while loop changes the flow to repeat a statement while a
condition is True. You can also use else with a while loop.

Statment

while condition
<Boolean>

Statement

Statement

Statement

Statment

...

True
Repeat

False

Kayvan Nejabati Zenouz MATH1166

89

Python while Statements

The general expression for while statement is as follows.

while <Boolean expression>: # True/False

condition followed by colon

<indented block of code> # some number of

indented lines to be preformed until

Boolean condition is false

Example 1

a=float(input("Enter a number"))

while a<=10:

print(a); a+=1

Example 2

a=input("Enter the lecturer’s name for MATH1166")

while a!="Kayvan":

a=input("Enter another guess")

else:

print("You have guessed correctly!")

Kayvan Nejabati Zenouz MATH1166

90

for and while Loops

Exercise 3:

1 Write a for loop to print the type of each element in

T=(-17.5, "kilo", "ram", 5, ["echo", 7])

2 Write a for loop to double the elements which are divisible
by 5 and positive in

L=[0, 5, 1, 3, 4, 8, 7, 13, -15, 12, 10]

3 Write a while loop which computes the product of first 50
integers, i.e.,

1× 2× · · · × 50.

4 Write a for loop instead of while loop for above.

5 Write a code which prints all strings and their length in

L=[-17.5, "kilo", "ram", 5, ("echo", 7)]

Kayvan Nejabati Zenouz MATH1166

91

break Statements

The statement break can be used to immediately transfer to the
first statement past the last line of the loop. The code

while True:

<statement(s)>

runs for ever! It can be stopped using break. For example,

while True: # loop forever

line = input("Type anything, type ’done’ to exit: "

)

if line == ’done’:

break # transfers control out of the loop

print("You entered:", line)

print("Finished")

Kayvan Nejabati Zenouz MATH1166

92

continue Statements

The continue statement continues with the next iteration of the
loop.

for num in range(2, 10):

if num % 2 == 0:

print("Found an even number", num)

continue # Go back to the loop

print("Found a number", num)

which can be used to reduce unnecessary printing.

Kayvan Nejabati Zenouz MATH1166

93

Summary

What we did today...

Flows Conditional Statements

if, else, elif
Loops

for, while, else
Other statments

break, continue
Next Time

Built-in and user-defined functions

Kayvan Nejabati Zenouz MATH1166

Week 9
Built-in and User-Defined Functions

Built-in Functions

abs() | delattr() | hash() | memoryview()| set()

all() | dict() | help() | min() | setattr()

any() | dir() | hex() | next() | slice()

id() | divmod() | ascii() | object() | sorted()

bin() | enumerate() | input() | oct() |staticmethod()

int() | eval() | bool() | open() | tuple()

ord() | exec() |isinstance()| breakpoint()| range()

pow() | filter() |issubclass()| bytearray() | super()

str() | float() | bytes() | print() | iter()

len() | format() |callable() | property() | compile()

chr() | frozenset() | list() |classmethod() | vars()

sum() | getattr() |locals() | repr() | zip()

type()| globals() | map() | reversed() | round()

max() | hasattr() | complex()| __import__()

94

95

Lecture Contents

1 Introduction
Module Aims and Assessment
Topics to be Covered
Reading List and References

2 Week 5: Data and Visualisation with Excel
What is Excel?
Data Entry and Functions
Visualisation Methods
Tables and Pivots

3 Week 6: Introduction to Python 3
What is Python?
Installing and Running
Basic Programming and Mathematics
Interfaces for Python: IDLE, Jupyter,
Spyder
Packages: math, cmath, numpy

4 Week 7: Data Types, Methods, and
Programming

Code and Data
Data Types: int, str, bool, float, complex

Variables and Assignments
Collection of Data: tuple, list, set, dict

Logical and Comparison Operations
First Programme

5 Week 8: Conditional Statements and Loops

if, else, and elif Statements
for and while Loops
break and continue Statements

6 Week 9: Built-in and User-Defined Functions
Functions in Mathematics
Built-in Functions
User-Defined Functions
Python Anonymous Functions lambda

7 Week 10: Matrices, Dataframes, and Data
Manipulation

Matrices with numpy and sympy

Linear Algebra, Symbolic Mathematics,
Calculus, and Number Theory with sympy

Data Manipulation and Visualisation with
pandas

Import Data pandas.read_excel()

8 Week 11: Statistics and Visualisation
Methods

Statistics with scipy

Plotting with matplotlib

Interactive Plots with plotly

9 Week 12: Numerical Algorithms
Introduction to Numerical Analysis
Roots of Nonlinear Equations
The Bisection Method
Error for Bisection Method

Kayvan Nejabati Zenouz MATH1166

96

Intended Learning Outcomes

By the end of this session you will be able to...

1 Learn about functions and how they operate in Python.

2 Use the built-in functions.

3 Create user-defined functions.

Kayvan Nejabati Zenouz MATH1166

97

Functions in Mathematics

Much of mathematics is concerned with the study of functions,
this is due to the fact that they have some much applications is
real life!

Question

What is a function?

Definition (Function)

Let X and Y be sets. A function from X to Y is a rule that
assigns to each x ∈ X a single element of T , denoted by f(x).
We write

f : X −→ Y

to mean that f is a function from X to Y . If f(x) = y, we often
say f sends x 7→ y.

Kayvan Nejabati Zenouz MATH1166

98

Functions: Domain, Range, Image

The set X is known as the domain and Y the range.

f
X

x

Y

f(x)

The elements of Y which can be reached by applying f to
elements of X for a set called the image of f . That is

Im f = f(X) = {f(x) | x ∈ X}.
For example,

f : R −→ R
x 7→ x2.

Kayvan Nejabati Zenouz MATH1166

99

Functions in Programming

A function diverts the follow once called.

Statment

function call

Statement

Statement

Statement

Statment

...

Kayvan Nejabati Zenouz MATH1166

100

Built-in Functions

We have seen the built-in operators in Python

+, −, ∗, /, ∗∗, //, %, <, >, · · · .

Similarly Python comes with a number of built-in
functions.

Using a function is known as calling a function. Here’s
what a generic call to a function with arguments looks like:

<functionName>(<argument1>, <argument2>, ...)

A function can have zero or any number of input variables
as well as default values.

We have worked with many other functions already print()

input(), type(), bool(), int(), string(), float(),
tuple(), dict() pow(), complex(), frozenset(), ...

If you need a function which does not exit in Python
already, you can define your own function.

Kayvan Nejabati Zenouz MATH1166

101

Arguments in Built-in Functions

Some functions accept a number of propositional arguments.

We have already used print(), whose input can be a
number of variables.

print("Hello, World", "Today I am", 22, sep=" - ", end=

" ")

The print() function has three key word arguments: sep,
end, and file.

The sep parameter’s default is a space; if two or more
positional arguments are given, each is printed with the sep

in between.
The end parameter’s default is \n, which is why a newline is
printed at the end of calls to print().
The file parameter’s default is sys.stdout, the standard
output stream, which is usually the console.

Kayvan Nejabati Zenouz MATH1166

102

User-Defined Functions

You can define a function using the general expression.

def functionName(parameter1, parameter2,...):

def with function name, a number of

inputs followed by colon

<indented block of code> # some number of

indented lines to be

preformed on the inputs

Example 1

def hello(): # name of the function and no input

print("Hello, World!") # Prints "Hello, World"

Example 2

def powerAddFun(x,y=2): # has two input x and y

Defualt value for y is 2

return pow(x,y), x+y # Return a tuple output

Call by hello(), powerAddFun(2,3), or powerAddFun(2).
Kayvan Nejabati Zenouz MATH1166

103

Functional Compositions

You can compose functions, i.e., apply one after the other.

age=20 # Composition of

print(type(age)) # Compose print() and type()

You can write functions that apply to collection types.

def enumerate(sequence, start=0): # Number

n = start # elements in a collection type

for elem in sequence:

yield n, elem

n += 1

You can use conditional statements and loops in functions.

def all(iterable): # Decide if elements

for element in iterable: # in a collection

if not element: # type are True

return False

return True

Kayvan Nejabati Zenouz MATH1166

104

Exercise 1: Functions

1 Write a function that returns

x2 + x− 2

for a given x. Apply your function to range(1,10).

2 Write a function which has inputs height, in meters,
weight in kilo, and returns BMI. Recall

BMI =
weight

height2
.

3 Write a function which has no input, but once called asks
for a name and prints

....(name) will be a great mathematician!

4 Write a function that calculates the mean of all numbers in
a collection type.

Kayvan Nejabati Zenouz MATH1166

105

Python Anonymous Functions lambda

A lambda function is a small anonymous function.

It can have any number of inputs, but only one expression

functionName = lambda arguments : expression

For example,

powerFunLambda = lambda x,y : pow(x,y)

The power of lambda is better shown when you use them as
an anonymous function inside another function.

def myFunc(n): # for each n

return lambda a : a * n # create a lambda

myDoubler = myFunc(2) # returns a --> 2*a

myDoubler(11) # returns 2*11

Kayvan Nejabati Zenouz MATH1166

106

Summary

What we did today...

Functions

Assignments between two sets
Built-in Functions

print(), input(), type(), ...
User-Defined Functions

def followed by name, ...
Python Lambda

lambda arguments : expression

Next Time

Matrices and Data Manipulation

Kayvan Nejabati Zenouz MATH1166

Week 10
Matrices and Data Manipulation

from sympy import * # import sympy

M = Matrix([[1, 0, 1, 3],

[2, 3, 4, 7],

[-1, -3, -3, -4]])

M_rref = M.rref() # Use sympy.rref() method

print("The Row echelon form of matrix M and the pivot

columns : {}".format(M_rref))

The Row Reduced Echelon Form of matrix M and the pivot

columns: (Matrix([

[1, 0, 1, 3],

[0, 1, 2/3, 1/3],

[0, 0, 0, 0]]), (0, 1))

107

108

Lecture Contents

1 Introduction
Module Aims and Assessment
Topics to be Covered
Reading List and References

2 Week 5: Data and Visualisation with Excel
What is Excel?
Data Entry and Functions
Visualisation Methods
Tables and Pivots

3 Week 6: Introduction to Python 3
What is Python?
Installing and Running
Basic Programming and Mathematics
Interfaces for Python: IDLE, Jupyter,
Spyder
Packages: math, cmath, numpy

4 Week 7: Data Types, Methods, and
Programming

Code and Data
Data Types: int, str, bool, float, complex

Variables and Assignments
Collection of Data: tuple, list, set, dict

Logical and Comparison Operations
First Programme

5 Week 8: Conditional Statements and Loops

if, else, and elif Statements
for and while Loops
break and continue Statements

6 Week 9: Built-in and User-Defined Functions
Functions in Mathematics
Built-in Functions
User-Defined Functions
Python Anonymous Functions lambda

7 Week 10: Matrices, Dataframes, and Data
Manipulation

Matrices with numpy and sympy

Linear Algebra, Symbolic Mathematics,
Calculus, and Number Theory with sympy

Data Manipulation and Visualisation with
pandas

Import Data pandas.read_excel()

8 Week 11: Statistics and Visualisation
Methods

Statistics with scipy

Plotting with matplotlib

Interactive Plots with plotly

9 Week 12: Numerical Algorithms
Introduction to Numerical Analysis
Roots of Nonlinear Equations
The Bisection Method
Error for Bisection Method

Kayvan Nejabati Zenouz MATH1166

109

Intended Learning Outcomes

By the end of this session you will be able to...

1 Know how to create vectors and matrices with numpy and
sympy.

2 Preform linear algebra operations, symbolic manipulations,
and number theoretic calculations.

3 Create/manipulate dataframes and load data with pandas.

4 Produce summary tables and visualisation from data.

Kayvan Nejabati Zenouz MATH1166

110

Introduction

So far we have learnt all basics of programming:

Basic calculations and operations.
Data types, manipulation of collection types.
Conditional statements and Loops.
Use defined and built-in functions.
Creating programmes to solve problems.

We can now look at advanced usage of Python for

linear algebra and number theory,
statistics and data analysis,
plotting/visualisation, and
sophisticated mathematical problems.

Libraries numpy and sympy are used for creating and
manipulating matrices as well as symbolic mathematics.

The library pandas is used for loading and analysis of data
into Python.

Kayvan Nejabati Zenouz MATH1166

111

Package with numpy and sympy

For calculation that are repeated for a set of input values, it
is useful to store data as arrays and computation in terms
of array: vectorisation.

The package NumPy provides efficient functions for
manipulating and processing arrays.

NumPy arrays bear some resemblance to Python’s list data
structure.

import numpy # You can use: import numpy as np

V=[1,2,3,4] # list

Vn=numpy.array([1,2,3,4]) # A numpy array

However, NumPy arrays are homogeneous with fixed size.

homogeneous: all elements in the array have the same data
type. Fixed size means that an array cannot be resized.

You can preform linear algebra operations with NumPy
arrays.

Kayvan Nejabati Zenouz MATH1166

112

Arrays with Library numpy

Easiest way to create arrays, i.e., vectors and matrices is through
lists within a list.

The code

V=numpy.array([1,2,3,4]) # A row numpy array

creates a row vector say

V =
(
1 2 3 4

)
.

However, the code

V=numpy.array([[1],

[2],

[3],

[4]]) # A column numpy array

create the column vector V =


1
2
3
4

 .

Kayvan Nejabati Zenouz MATH1166

113

Matrices, Tensors, and Attributes

Matrices

To create a matrix use lists with a list. The code

A=numpy.array([[1, 2, 3],

[0, 1, 0],

[3, 7, 13],

[0.1, 0, 0.1]])

creates the matrix

A =


1 2 3
0 1 0
3 7 13

0.1 0 0.1

 .

Kayvan Nejabati Zenouz MATH1166

114

Tensors and Basic Attributes of NumPy Arrays

Create multidimensional arrays, tensors, with types

At=numpy.array([[[1,2],[2,3]],

[[0,1],[1,0]],

[[3,7],[13,17]]], dtype=complex)

The functions used to find the basic attributes of arrays

type(At), At.shape, At.size, At.ndim, At.dtype

(numpy.ndarray, (3, 2, 2), 12, 3, dtype(’complex128’))

Change data types use astype(); for example,

A.astype(numpy.int)

array([[1, 2, 3],

[0, 1, 0],

[3, 7, 13],

[0, 0, 0]])

Kayvan Nejabati Zenouz MATH1166

115

Creating Arrays

There are several functions, alongside numpy.array(), which
allow you to create arrays according to patters.

Function Definition

numpy.zeros((m,n)) m rows and n columns of zeros

numpy.ones((m,n)) m rows and n columns of ones

numpy.arange(n) array containing 0, ..., n− 1

numpy.random.rand(n) array containing n random numbers

numpy.linspace(a,b,s) from a to b in s steps

numpy.eye(n,k=r) n× n identity matrix shifted by r

numpy.diag(L) zero matrix with L on the diagonal

numpy.meshgrid(L,S) mesh of arrays L and S

You can apply numpy functions to arrays, e.g.,
numpy.log(numpy.linspace(1,10,10)).
Some functions: numpy.cos, numpy.sin, numpy.tan,
numpy.arccos, numpy.arcsin, numpy.cosh, numpy.sinh,

numpy.tanh, numpy.sqrt, numpy.exp, numpy.log.

Kayvan Nejabati Zenouz MATH1166

116

Indexing, Slicing, Shaping

Indexing and slicing are done using similar rules for lists. For
example, for vectors

a[n:m:p] # Take elements from n to m in steps of p

For matrices we can separate row and column by commas

A[m,n] # Take element in row m column n

A[1,:] # Take second row

A[:,1] # Take second column

A[:2, :2] # upper half diagonal block matrix

A[::2, ::2] # every second element starting from

0,0

Make comparison and subset accordingly

a > 5 # boolean comparison for elements > 5

a[a > 5] # Take elements > 5

A[A != 0] # Take nonzero elements

Reshape vectors: reshape(n,m), flatten(), transpose(),
numpy.hstack(), , numpy.vstack(), numpy.append(a,x),
numpy.insert(a,m,x), numpy.delete(a,m).Kayvan Nejabati Zenouz MATH1166

117

Basic Operations

The standard arithmetic operations with arrays perform
elementwise.

x = numpy.array([[1, 2], [3, 4]])

y = numpy.array([[5, 6], [7, 8]])

x*y

array([[5, 12],

[21, 32]])

Comparisons are preformed componentwise

x<y

array([[True, True],

[True, True]])

There are also several aggregate functions: numpy.mean,
numpy.std, numpy.var, numpy.sum, numpy.prod,
numpy.cumsum, numpy.cumprod, numpy.min, numpy.max,
numpy.argmin, numpy.argmax, numpy.all, numpy.any.

Kayvan Nejabati Zenouz MATH1166

118

Linear Algebra

There are several functions for linear algebra operations.

Function Definition
a+b, a-b, k*a addition/subtraction, scalar
A.transpose() transpose of A
numpy.dot(a,b) dot product and multiplication
numpy.cross(a,b) cross product for 2/3-D
numpy.matmul(A,B) multiplication
numpy.linalg.matrix_power(B,n) raise matrix B a power n
numpy.linalg.det(A) determinant of A
numpy.linalg.inv(A) inverse of A
numpy.linalg.solve(A,b) solve Ax = b
numpy.linalg.eigvals(A) eigenvalues of A
numpy.linalg.eig(A) eigenvalues/vectors of A
numpy.linalg.norm(A) matrix or vector norm

Functions offered by NumPy and SymPy (see next slide) can be
used to make many computations for concepts you learn in
MATH1167 Techniques of Calculus and Linear Algebra.

Kayvan Nejabati Zenouz MATH1166

119

Matrices with sympy

You can use the symbolic mathematics library sympy for
some matrix manipulations.

The code

M=sympy.Matrix([[1, 0, 1],

[2, 3, 4],

[-1, -3, -3]])

creates the matrix

M =

 1 0 1
2 3 4
−1 −3 −3

 .

Some functions on matrices are M.shape, M.row(m),
M.col(n), M+N, M*N, M**-1, M.det(), M.rref(),
M.eigenvals(), M.eigenvects(), M.diagonalise(),
M.nullspace().

Kayvan Nejabati Zenouz MATH1166

120

Exercise 1: Vectors and Matrices

1 Create the following vectors and matrices, using NumPy,

A =

(
1 0 1
2 3 4

)
, u = 5i+ 12j, v = i+ 2j − 2k,

where i, j, k are the standard unit vectors.
2 Extract the matrix (

1 1
2 4

)
from A.

3 Extract the third column of A.
4 Find the following.

u+ v, u · v, u× v, |u|, v̂,
AT , Au, AAT , detATA.

5 Find the eigenvalues and eigenvectors of AAT .
6 Find the reduced echelon form of A.

Kayvan Nejabati Zenouz MATH1166

121

Symbolic Mathematics

You can define symbols using function of sympy and preform
many mathematical operations.

declare symbols

a, b, c, d = sympy.symbols("a, b, c, d")

x, y, z, t = sympy.symbols("x, y, z, t")

M = sympy.Matrix([[a, b], # define matrices

[c, d]]) # in terms of

symbols

N = sympy.Matrix([[x, y],

[z, t]])

M*N # * is matrix multiplication in sympy

Have symbolic versions of quantities and expressions

sympy.pi

sympy.sqrt(27)

expr=sympy.exp((x+y)**2)

Evaluate using evalf(), e.g, sympy.sqrt(27).evalf(5).
Kayvan Nejabati Zenouz MATH1166

122

Symbols and Calculus sympy Functions

Function Definition
sympy.symbol("x,y,z") define symbols
sympy.exp(), sympy.sqrt() usual functions
sympy.Lambda(x,x**2) lambda functions
sympy.expand(expr), sympy.factor(expr) expand/factor expr
expr.subs({x:a,y:b}) substitute x = a and y = b
sympy.Eq(x+y,4) define equation x+ y = 4
sympy.simplify(expr) simplify expr

sympy.diff(sympy.exp(x**2),x,2) differentiate ex
2

twice

sympy.Derivative(sympy.exp((x+y)**2),x,y) derivative
∂2

∂x∂y
e(x+y)2

sympy.integrate(x**3,(x,a,b)) integral
∫ b

a
x3dx

sympy.Integral(x**3,x) integral
∫
x3dx

sympy.Integral(x**3,x).doit() compute
∫
x3dx

sympy.limit(sympy.sin(x)/x,x,0) limx→0
sinx

x
sympy.solveset(sympy.Eq(x**2,-1),x) solve x2 + 1 = 0

sympy.Sum(1/x**2,(x,1,sympy.oo)).doit() evaluate
∑∞

x=1

1

x2

Kayvan Nejabati Zenouz MATH1166

123

Number Theory sympy Functions

The library SymPy also offers many number theoretic
functions.

Function Definition

sympy.isprime(n) True is n is prime

sympy.primerange(m, n) primes p between m ≤ p < n− 1

sympy.randprime(m, n) random prime p between m ≤ p < n− 1

sympy.primepi(n) Number of primes p ≤ n
sympy.prime(n) the nth prime

sympy.primefactors(n) prime factors of n

sympy.divisor_count(n) number of divisors of n

sympy.factorint(n) factorisation of n

These can be used in computations for concepts you learn in
MATH1172 Vector Calculus and Number Theory during
your second year.

Kayvan Nejabati Zenouz MATH1166

124

Data Manipulation with pandas

In many case we have dataframes or .csv files which needs
to be analysed as arrays in Python.
Easy-to-use data structures and data analysis tools pandas

library is used for dealing with such cases.
A dataframe is a two-dimensional array with labelled axes.
You can create dataframe using pandas.

df = pandas.DataFrame({

’A’: numpy.linspace(0,2,8)**2,

’B’: pandas.date_range(’20130101’, periods=8),

’C’: pandas.Series(range(8), dtype=’float32’),

’D’: numpy.array([1,3] * 4, dtype=’int32’),

’E’: pandas.Categorical(["train", "train", "test",

"train"]*2),

’F’: [’foo’,’goo’]*4,

’G’: numpy.random.randn(8)}, index=list(range(8)))

df.name= "Mydata"

is a dataframe with 8 rows and 7 columns.
Kayvan Nejabati Zenouz MATH1166

125

Dataframes

The code produces the following dataframe.
A B C D E F G
0.000000 2013-01-01 0.0 1 train foo -0.947895
0.081633 2013-01-02 1.0 3 train goo 0.841866
0.326531 2013-01-03 2.0 1 test foo 0.310235
0.734694 2013-01-04 3.0 3 train goo 0.171024
1.306122 2013-01-05 4.0 1 train foo -0.759685
2.040816 2013-01-06 5.0 3 train goo 0.141803
2.938776 2013-01-07 6.0 1 test foo 0.604985
4.000000 2013-01-08 7.0 3 train goo -0.300757

Attributes of dataframe can be found using
df.index, df.columns, df.dtypes, df.describe(),
df.median(), df.mean(), df.std().

Indexing and slicing can be preformed through, for
example, df["A"], df.A[2:], df.loc[1:5,["A","B"]],
df[(df.E == "train") & (df.G > 0)],
df.sort_index(axis=1, ascending=False).

Kayvan Nejabati Zenouz MATH1166

126

Grouping and Plots

Grouping and pivoting can be done through

df.groupby([’E’, ’F’]).sum()

pandas.pivot_table(df, values=’A’,

index=[’E’, ’F’], columns=[’D’])

Summary plots

df.plot(y=["G","A"], x="B", kind=’line’, title=’

Line Plot’)

df.plot(y=["G","A"], x="B", kind=’bar’, title=’Bar

Plot’)

df.plot(y=["G","A"], x="B", kind=’box’, title=’Box

Plot’)

df.plot.scatter(y="A", x="C", c=’G’, title=’

Scatter Plot’)

Transpose data df.T or turn into NumPy object
df.to_numpy().
To import a .csv file use pandas.read_excel().

Kayvan Nejabati Zenouz MATH1166

127

Summary

What we did today...

NumPy arrays and Matrices

numpy.array(), functions, and at-
tributesLinear Algbera

numpy.dot(), numpy.linalg.det()
SymPy and Symbolic

sympy.symbols("x, y, z"), calculus,
number theoryData with Pandas

pandas.DataFrame(), visualisation,
pandas.read_excel()Next Time

Statistics and Visualisation Methods

Kayvan Nejabati Zenouz MATH1166

Week 11
Statistics and Visualisation Methods

−4 −2 0 2 4

−4

−2

0

2

4

x

y
Elliptic Curve y2 = x3 − x+ 1

128

129

Lecture Contents

1 Introduction
Module Aims and Assessment
Topics to be Covered
Reading List and References

2 Week 5: Data and Visualisation with Excel
What is Excel?
Data Entry and Functions
Visualisation Methods
Tables and Pivots

3 Week 6: Introduction to Python 3
What is Python?
Installing and Running
Basic Programming and Mathematics
Interfaces for Python: IDLE, Jupyter,
Spyder
Packages: math, cmath, numpy

4 Week 7: Data Types, Methods, and
Programming

Code and Data
Data Types: int, str, bool, float, complex

Variables and Assignments
Collection of Data: tuple, list, set, dict

Logical and Comparison Operations
First Programme

5 Week 8: Conditional Statements and Loops

if, else, and elif Statements
for and while Loops
break and continue Statements

6 Week 9: Built-in and User-Defined Functions
Functions in Mathematics
Built-in Functions
User-Defined Functions
Python Anonymous Functions lambda

7 Week 10: Matrices, Dataframes, and Data
Manipulation

Matrices with numpy and sympy

Linear Algebra, Symbolic Mathematics,
Calculus, and Number Theory with sympy

Data Manipulation and Visualisation with
pandas

Import Data pandas.read_excel()

8 Week 11: Statistics and Visualisation
Methods

Statistics with scipy

Plotting with matplotlib

Interactive Plots with plotly

9 Week 12: Numerical Algorithms
Introduction to Numerical Analysis
Roots of Nonlinear Equations
The Bisection Method
Error for Bisection Method

Kayvan Nejabati Zenouz MATH1166

130

Intended Learning Outcomes

By the end of this session you will be able to...

1 Use the statistical capabilities of Python with scipy.

2 Make plots and different visualisations with matplotlib.

3 Create interactive plots with plotly.

Kayvan Nejabati Zenouz MATH1166

131

Introduction

SciPy Scientific

The library scipy is a collection of mathematical algorithms
built on NumPy. It offers many features including

statistical functions,

integration and differential equation solvers,

interpolation,

signal processing, and many others.

Matplotlib Graphics

The library matplotlib is 2-D plotting library which produces
high quality figures.

Plotly’s Interactive

The library plotly makes interactive, publication-quality graph
and animations.

Kayvan Nejabati Zenouz MATH1166

132

Statistics with scipy

The stats component of scipy allows for implementation of
combinatorial functions and random variables.
It includes special functions:

scipy.special.factorial(n) for n!
scipy.special.comb(n, k) for(

n

k

)
=

n!

k!(n− k)!

scipy.special.comb(n, k, repetition=True) for

(k + n− 1)!

k!(n− 1)!

scipy.special.perm(n, k) for

n!

(n− k)!

These can be used in computations for concepts you learn in
STAT1040 Probability and Statistical Inference.

Kayvan Nejabati Zenouz MATH1166

133

Random Variables in scipy

Continuous

stats.norm.rvs(loc=mu, scale=sigma, size=k)

generates k samples form normal distribution N (µ, σ).

Related functions include stats.norm.pdf,
stats.norm.cdf, stats.norm.ppf, stats.norm.moment,
stats.norm.stats, stats.describe.

Includes stats.expon.rvs, stats.gamma.rvs,
stats.chi.rvs

Discrete

stats.binom.rvs(n, p, size=k) generates k samples form
normal distribution Bin (n, p).

Related functions include stats.norm.pmf,
stats.norm.cdf, stats.describe.

stats.bernoulli.rvs, stats.poisson.rvs,
stats.geom.rvs.

Kayvan Nejabati Zenouz MATH1166

134

Plotting with matplotlib

Matplotlib is widely used for plotting in Python.
At the top of the hierarchy is the matplotlib

”state-machine environment” which is provided by the
matplotlib.pyplot module (it is often used with NumPy).

import matplotlib.pyplot as plt

import numpy as np

At this level, simple functions are used to add plot elements.

x = np.linspace(0, 2, 100)

plt.plot(x, x, label=’linear’)

plt.plot(x, x**2, label=’quadratic’)

plt.plot(x, x**3, label=’cubic’)

plt.xlabel(’x label’)

plt.ylabel(’y label’)

plt.title("Simple Plot")

plt.legend()

plt.show()

Kayvan Nejabati Zenouz MATH1166

135

Plot Options with matplotlib

You can plot a list, Numpy arrays, or other collections types and
customise the appearance.

x=[1,3,5,9,9,2,3,4,9,10]; y=np.linspace(0, 3, 10)**2

plt.plot(x, color=’blue’, marker=’*’,

linestyle=’solid’, linewidth=2, markersize=10,

label="x vs index", alpha=0.2) # First plot

plt.plot(x, y, color=’red’, marker=’o’,

linestyle=’dashed’, linewidth=2, markersize=8,

label="x vs y", alpha=0.8) # Second plot

plt.ylabel("Y"); plt.xlabel("X") # Axes labels

plt.title("Two Plots") # Title for Plot

plt.legend(loc=9) # Show legend locations 1,...,10

plt.annotate(’Local Max’, xy=(3, 9), xytext=(0, 10),

arrowprops=dict(facecolor=’black’, shrink=0.05))

plt.axis([-1, 11, -1, 12]) # Axes limits

plt.grid(True); plt.show() # Show grid and plot

Kayvan Nejabati Zenouz MATH1166

136

More on matplotlib

You can produce scatter, line, box, bar, 3-D, and many other
plots. Produce several plots in one figure.

years = [1950, 1960, 1970, 1980, 1990, 2000, 2010]

gdp = [300, 543, 1075, 2862, 5979, 10289, 14958]

debt = [100, 1200, 800, 1100, 6000, 15000, 11000]

fig, ((ax1, ax2, ax3, ax4), (ax5, ax6, ax7, ax8)) = plt.

subplots(2,4, figsize=(15,10))

ax1.plot(years, gdp, color=’g’, marker=’o’)

ax2.step(years, gdp, color=’r’)

ax3.bar(years, gdp, color=’b’)

ax4.hist(gdp, color=’m’)

ax5.errorbar(years, gdp, debt, color=’k’)

ax6.scatter(years, gdp, color=’c’, marker=’*’)

ax7.fill_between(years, gdp, debt, color=’y’)

ax8.boxplot(debt)

plt.tight_layout(pad=0.4, w_pad=0.5, h_pad=1.0)

plt.show()

Kayvan Nejabati Zenouz MATH1166

137

Interactive Plots with plotly

Matplotlib is now old and boring!

Plotly

Modern library which allows for interactivity and creation of
animations.

You can use either Plotly Express, for quick graphs, or
Plotly Graphics Objects, for advanced usage.

You can create a line, bar, box, and many others using
plotly.express library.

import plotly.express as px

fig = px.line(x=years, y=gdp,

labels={’x’:’Years’, ’y’:’Billions of Dollars’},

title=’Nominal GDP’)

fig.show()

Kayvan Nejabati Zenouz MATH1166

138

Graphics Objects

For more customisation use plotly.graph_objects library.

import plotly.graph_objects as go

fig = go.Figure(data=go.Scatter(x=years, y=gdp,

mode=’lines+markers’))

fig.update_layout(title=’Nominal GDP’)

fig.update_xaxes(title_text=’Years’)

fig.update_yaxes(title_text=’Billions of Dollars’)

fig.show()

x = np.linspace(0, 2, 20); fig = go.Figure()

fig.add_trace(go.Scatter(x=x, y=x, mode=’markers’,

name=’markers’)) # Add traces

fig.add_trace(go.Scatter(x=x, y=x**2,

mode=’lines+markers’, name=’lines+markers’))

fig.add_trace(go.Scatter(x=x, y=x**3, mode=’lines’,

name=’lines’))

fig.update_layout(title=’Simple Plot’); fig.show()

Kayvan Nejabati Zenouz MATH1166

139

Summary

What we did today...

SciPy

Statistics and special functions
Basic Plotting

matplotlib.pyplot
Advanced Interactivity

plotly.express, plotly.
graph_objectsNext Time

Numercial Methods

Kayvan Nejabati Zenouz MATH1166

Week 12
Numerical Algorithms

Fixed point method to find zeros of f(x)=x-cos(x)

import math

f = lambda x: x-math.cos(x)

g = lambda x: math.cos(x)

x=[0.1]

err=[f(x[0])]

NofIt=50

tolorance=0.0005

for i in range(NofIt):

x.append(g(x[i]))

err.append(x[i+1]-x[i])

if abs(err[i+1]) < tolorance:

print("Number of Iterations", i+1, "Final x is",

x[-1], "final evaluation", f(x[-1]), sep="\n ")

break

140

141

Lecture Contents

1 Introduction
Module Aims and Assessment
Topics to be Covered
Reading List and References

2 Week 5: Data and Visualisation with Excel
What is Excel?
Data Entry and Functions
Visualisation Methods
Tables and Pivots

3 Week 6: Introduction to Python 3
What is Python?
Installing and Running
Basic Programming and Mathematics
Interfaces for Python: IDLE, Jupyter,
Spyder
Packages: math, cmath, numpy

4 Week 7: Data Types, Methods, and
Programming

Code and Data
Data Types: int, str, bool, float, complex

Variables and Assignments
Collection of Data: tuple, list, set, dict

Logical and Comparison Operations
First Programme

5 Week 8: Conditional Statements and Loops

if, else, and elif Statements
for and while Loops
break and continue Statements

6 Week 9: Built-in and User-Defined Functions
Functions in Mathematics
Built-in Functions
User-Defined Functions
Python Anonymous Functions lambda

7 Week 10: Matrices, Dataframes, and Data
Manipulation

Matrices with numpy and sympy

Linear Algebra, Symbolic Mathematics,
Calculus, and Number Theory with sympy

Data Manipulation and Visualisation with
pandas

Import Data pandas.read_excel()

8 Week 11: Statistics and Visualisation
Methods

Statistics with scipy

Plotting with matplotlib

Interactive Plots with plotly

9 Week 12: Numerical Algorithms
Introduction to Numerical Analysis
Roots of Nonlinear Equations
The Bisection Method
Error for Bisection Method

Kayvan Nejabati Zenouz MATH1166

142

Intended Learning Outcomes

By the end of this session you will be able to...

1 Understand the basic concepts of numerical analysis.

2 Use Python to implement algorithms solving numerical
problems.

Kayvan Nejabati Zenouz MATH1166

143

Introduction to Numerical Analysis

Numerical analysis is the of algorithms for obtaining
numerical (or approximations) solutions of mathematical
problems.

Consider the zero, in the interval (0, 1), of the function

f(x) = x− cosx = 0.

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

1

1.2

x

f x
cosx

Cannot solve exactly, we need to find an approximation.

Kayvan Nejabati Zenouz MATH1166

144

Applications of Numerical Analysis

Solving Mathematical Problems Numerically

There are many situations similar to the previous slide:

Solutions of Equations in One Variable
Interpolation and Polynomial Approximation
Numerical Differentiation and Integration
Initial-Value Problems for Ordinary Differential Equations
Iterative Techniques in Matrix Algebra
Numerical Solutions of Nonlinear Systems of Equations
Boundary-Value Problems for Ordinary Differential
Equations
Numerical Solutions to Partial Differential Equations

In all the above cases advanced numerical techniques are
applied in order to approximate solutions.

You will study some of the topics above in MATH1169
Numerical Mathematics in your second year.

Kayvan Nejabati Zenouz MATH1166

145

Roots of Nonlinear Equation

We are concerned with estimating roots of functions, i.e., x
such that f(x) = 0.

For example approximating solutions of

f(x) =
1

x
− tan(x) or f(x) = 1− xex.

Problem dates back to 1700 B.C.E Babylonian: they
approximated the solution to f(x) = x2 − 2 as x = 1.424222.

Using iterative methods, given a function f(x), we
generate a sequence xn for n = 1, ...,∞ which converges to
a root x∗ of f(x) that is

lim
n→∞

f(xn) = 0.

Kayvan Nejabati Zenouz MATH1166

146

The Bisection Method

Theorem (Intremediate Value Theorem (Bolzano 1817))

Suppose f is a continuous function on an interval [a, b]. If u is
a number between f(a) and f(b), then there exists c ∈ [a, b] with
f(c) = u.

a c b

f(a)

u

f(b)

x

f

Thus if f(x) is continuous on [a, b] and f(a)f(b) < 0, then there
exists x∗ ∈ [a, b] with f(x∗) = 0.

Kayvan Nejabati Zenouz MATH1166

147

Bisection Method Algorithm

Suppose f(x) is a continuous function on [a, b] and
f(a)f(b) < 0.
We find a sequence xn conversing to a solution x∗ of f suing
the following procedure.

1 Let a1 = a and b1 = b.
2 For n ≥ 1, calculate xn = an+bn

2 . If f(xn) = 0, then stop.
3 If f(xn)f(an) < 0, set an+1 = an and bn+1 = xn.
4 If f(xn)f(bn) < 0, set an+1 = xn and bn+1 = bn.
5 Repeat until |bn − an| is sufficiently small.

Exercise 1 Bisection Method by Hand:

1 Show that the function

f(x) = x− cosx

has a root in the interval (0, 1).

2 Preform 3 iterations of the bisection method to find an
approximation for the root.

Kayvan Nejabati Zenouz MATH1166

148

The Bisection Method In Python

The following is a way to implement the bisection method.

f = lambda x: x-math.cos(x) # Function

a,b=0,1 # Initial values

x=[] # Empty list to keep x

err=[f(a)] # First error

NofIt=50 # Number of iterations

tolorance=0.00005 # Error tolorance

for i in range(NofIt): # Go through iterations

x.append((a+b)/2)

if f(x[i])*f(a)<0:

b=x[i]

else:

a=x[i]

e.append(b-a)

if abs(e[i+1]) < tolorance:

print("Number of Iterations", i+1, "Final x is",

x[-1], "final evaluation", f(x[-1]), sep="\n ")

break

Kayvan Nejabati Zenouz MATH1166

149

Error and Other Root Finding Methods

Theorem (Bisection Method)

Suppose f is a continuous function on [a, b] and f(a)f(b) < 0.
The Bisection method generates a sequence xn approximating a
zero x∗ of f with

|xn − x∗| ≤
b− a

2n
, for n ≥ 1.

Other Root Finding Methods

Other root finding algorithm include:

The Secant Method,

Fixed Point Iteration,

Newton-Raphson Method.

The have similar implementations in Python which you will
study in your future years!

Kayvan Nejabati Zenouz MATH1166

150

Summary

What we did today...

Numerical Analysis

Introduction, applications
Root Finding Algorithms

Bisection, Fixed Point
Next Time

There won’t be any!
Thanks for Your Attention!

Have a good holiday season!

Kayvan Nejabati Zenouz MATH1166

See You Next Time

Please Do Not Forget To

Ask any questions now or through my contact details.

Drop me comments and feedback relating to any
aspects of the course.

Come and see me during Student Drop-in Hours:
MONDAYS 12:00-13:00 (MATHS ARCADE) AND
FRIDAYS 14:00-15:00 (QM315).
Alternatively, email to make an appointment.

Thank You!

Kayvan Nejabati Zenouz MATH1166

	Contents
	Introduction
	References
	Week 5: Data and Visualisation with Excel
	Week 6: Introduction to Python 3
	Week 7: Data Types, Methods, and Programming
	Week 8: Conditional Statements and Loops
	Week 9: Built-in and User-Defined Functions
	Week 10: Matrices, Dataframes, and Data Manipulation
	Week 11: Statistics and Visualisation Methods
	Week 12: Numerical Algorithms
	See You Next Time

