Skew Braces with Additive Group Isomorphic to $C_{p^n} \rtimes C_p$ and Corresponding Hopf-Galois Structures

Kayvan Nejabati Zenouz¹

University of Greenwich

Hopf algebras and Galois module theory Conference University of Nebraska (at Virtual) Omaha

May 25, 2020

 $^{^1{\}rm Email:}$ K.NejabatiZenouz@gre.ac.uk website: www.nejabatiz.com

Contents

Introduction

- The Yang-Baxter Equation and Skew Braces
- Hopf-Galois Structures and Skew Braces
- Automorphism Groups of Skew Braces
- Classification of Hopf-Galois Structures and Skew Braces
- Skew Braces and Hopf-Galois Structures of order p^3
- 2 Skew Braces and Hopf-Galois Structures of Type $C_{p^n} \rtimes C_p$
 - \bullet Motivation and the Group M_ϵ
 - Automorphisms of M_{ϵ}
 - The *p*-Sylow Subgroup of $\operatorname{Aut}(M_{\epsilon})$
 - Conjugation in $\operatorname{Aut}(M_{\epsilon})$
 - Subgroups of M_{ϵ} up to Automorphisms
 - Subgroups of $A(M_{\epsilon})$
 - Regular Subgroups of Holomorph
 - Regular Subgroups of $\operatorname{Hol}(M_{\epsilon})$ and Conjugation
 - Skew Braces of Type M_{ϵ}

Overview

 $\operatorname{Aut}(M_{\epsilon})$

First Part: brief preliminaries, notations, literature on

Yang-Baxter Equation

Skew Braces

Hopf-Galois Structures and Connections

 $\operatorname{Hol}(M_{\epsilon})$

Second Part: results of work in progress on

Skew Braces and Hopf-Galois Structures of Type

$$M_{\epsilon} \stackrel{\text{def}}{=} C_{p^n} \rtimes C_p$$

Subgroups of M_{ϵ} and $\operatorname{Aut}(M_{\epsilon})$

Section Contents

- Introduction
 - The Yang-Baxter Equation and Skew Braces
 - Hopf-Galois Structures and Skew Braces
 - Automorphism Groups of Skew Braces
 - Classification of Hopf-Galois Structures and Skew Braces
 - \bullet Skew Braces and Hopf-Galois Structures of order p^3
- 2 Skew Braces and Hopf-Galois Structures of Type $C_{p^n} \rtimes C_p$
 - Motivation and the Group M_ϵ
 - Automorphisms of M_{ϵ}
 - The *p*-Sylow Subgroup of $\operatorname{Aut}(M_{\epsilon})$
 - Conjugation in $\operatorname{Aut}(M_{\epsilon})$
 - Subgroups of M_{ϵ} up to Automorphisms
 - Subgroups of $A(M_{\epsilon})$
 - Regular Subgroups of Holomorph
 - Regular Subgroups of $\operatorname{Hol}(M_{\epsilon})$ and Conjugation
 - Skew Braces of Type M_{ϵ}

The Yang-Baxter Equation

For a vector space V, an element

 $R \in \mathrm{GL}(V \otimes V)$

is said to satisfy the Yang-Baxter equation (YBE) if

 $(R\otimes I)(I\otimes R)(R\otimes I)=(I\otimes R)(R\otimes I)(I\otimes R)$

holds.

This equation can be depicted by

Set-Theoretic Yang-Baxter Equation

In 1992 Drinfeld suggested studying the **simplest class of solutions** arising from the **set-theoretic** version of this equation.

Definition

Let X be a nonempty set and

$$r: X \times X \longrightarrow X \times X$$
$$(x, y) \longmapsto (f_x(y), g_y(x))$$

a bijection. Then (X, r) is a **set-theoretic solution** of YBE if

 $(r \times id)(id \times r)(r \times id) = (id \times r)(r \times id)(id \times r)$

holds. The solution (X, r) is called **non-degenerate** if $f_x, g_x \in \text{Perm}(X)$ for all $x \in X$ and **involutive** if $r^2 = \text{id}$.

Skew Braces

Definition

A (left) **skew brace** is a triple (B, \oplus, \odot) which consists of a set *B* together with two operations \oplus and \odot so that (B, \oplus) and (B, \odot) are groups such that for all $a, b, c \in B$:

$$a \odot (b \oplus c) = (a \odot b) \ominus a \oplus (a \odot c),$$

where $\ominus a$ is the inverse of a with respect to the operation \oplus .

Remark

A skew brace is called **two-sided** if

$$(b\oplus c)\odot a=(b\odot a)\ominus a\oplus (c\odot a),$$

and a **bi-skew brace** if

$$a \oplus (b \odot c) = (a \oplus b) \odot a^{-1} \odot (a \oplus c).$$

Skew Braces

Example

Any group (B, \oplus) with

```
a \odot b = a \oplus b (similarly with a \odot b = b \oplus a)
```

is a skew brace. This is the **trivial** skew brace structure.

Notation

- We call a skew brace (B, \oplus, \odot) such that $(B, \oplus) \cong N$ and $(B, \odot) \cong G$ a *G*-skew brace of **type** *N*.
- A skew brace (B, ⊕, ⊙) is called a brace if (B, ⊕) is abelian, i.e., a skew brace of abelian type.

Braces were introduced by Rump in 2007 as a generalisation of radical rings. They provide *non-degenerate*, *involutive* set-theoretic solutions of the YBE.

Skew Braces: History

Skew braces generalise braces and were introduced by Guarnieri and Vendramin in 2017.

They provide non-degenerate set-theoretic solutions of the Yang-Baxter equation.

Their connection to **ring theory** and **Hopf-Galois structures** was studied by Bachiller, Byott, Smoktunowicz, and Vendramin.

Theorem (Guarnieri and Vendramin)

Let (B, \oplus, \odot) be a skew brace. Then the map

$$r_B: B \times B \longrightarrow B \times B$$
$$(a, b) \longmapsto (\ominus a \oplus (a \odot b), (\ominus a \oplus (a \odot b))^{-1} \odot a \odot b)$$

is a non-degenerate set-theoretic solution of the YBE, which is involutive if and only if (B, \oplus, \odot) is a brace.

Hopf-Galois Structures

For L/K extension of fields with G = Gal(L/K), **Hopf-Galois** structures are K-Hopf algebras together with an action on L.

Definition

A Hopf-Galois structure on L/K consists of a finite dimensional cocommutative *K*-Hopf algebra *H* together with an action on *L* such that the *R*-module homomorphism

$$j: L \otimes_K H \longrightarrow \operatorname{End}_K (L)$$
$$s \otimes h \longmapsto (t \longmapsto sh(t)) \text{ for } s, t \in L, h \in H$$

is an isomorphism.

The group algebra K[G] endows L/K with the classical Hopf-Galois structure.

Theorem (Greither and Pareigis)

Hopf-Galois structures on L/K correspond bijectively to regular subgroups of Perm(G) which are normalised by the image of G, as left translations, inside Perm(G).

Every K-Hopf algebra which endows L/K with a Hopf-Galois structure is of the form $L[N]^G$ for some regular subgroup $N \subseteq \text{Perm}(G)$ normalised by the left translations.

Hopf-Galois Structures: Byott's Translation

Theorem (Byott)

Let G and N be finite groups. There exists a bijection between the sets

 $\mathcal{N} = \{ \alpha : N \hookrightarrow \operatorname{Perm}(G) \mid \alpha(N) \text{ is regular and normalised by } G \}$ $\mathcal{G} = \{ \beta : G \hookrightarrow \operatorname{Hol}(N) \mid \beta(G) \text{ is regular} \},$ where $\operatorname{Hol}(N) = N \rtimes \operatorname{Aut}(N).$

Enumerating Hopf-Galois Structures (Byott)

Using Byott's translation one can show that

Hopf-Galois Structures (HGS): Some Results

- Byott (1996): if |G| = n, then L/K has unique HGS iff $gcd(n, \phi(n)) = 1$
- Kohl (1998, 2019) HGS for C_{p^n}, D_n for a prime p > 2
- Byott (1996, 2004) HGS for $|G| = p^2, pq$, also when G a nonabelian simple group
- \blacklozenge Carnahan and Childs (1999, 2005) HGS for C_p^n, S_n
- \blacklozenge Alabadi and Byott (2017, 2019) HGS for |G| squarefree
- ♦ Nejabati Zenouz (2018, 2019) HGS for $|G| = p^3$ where $p \ge 2$
- Crespo and Salguero (2019) HGS for $C_{p^n} \rtimes C_D$ with $p \nmid D$
- Samways (2019) HGS for C_n and Tsang for S_n
- ♦ Campedel, Caranti, Del Corso (2019) for $|G| = p^2 q$: the cyclic Sylow p-subgroup case

14

• Crespo (2020) HGS for $2p^2$, with p > 2

Skew Braces Parametrise Hopf-Galois Structures

For a skew brace (B, \oplus, \odot) the group (B, \oplus) acts on (B, \odot) and we find

$$d: (B, \oplus) \longrightarrow \operatorname{Perm} (B, \odot)$$
$$a \longmapsto (d_a: b \longmapsto a \oplus b),$$

which is a regular embedding.

$$\begin{cases} \text{isomorphism classes} \\ \text{of } G\text{-skew braces,} \\ \text{i.e., with } (B, \odot) \cong G \end{cases} \xleftarrow{\text{bij}} \begin{cases} \text{classes of Hopf-Galois structures} \\ \text{on } L/K \text{ under } L[N_1]^G \sim L[N_2]^G \\ \text{if } N_2 = \alpha N_1 \alpha^{-1} \text{ for some} \\ \alpha \in \text{Aut}(G) \end{cases}$$

If (B,\oplus,\odot) is a skew brace of type, then we get the following Hopf-Galois structures on L/K

$$\left\{ L[\alpha \left(\operatorname{Im} d \right) \alpha^{-1}]^{(B,\odot)} \mid \alpha \in \operatorname{Aut} \left(B, \odot \right) \right\}.$$

Automorphism Groups of Skew Braces

Automorphism Groups

In particular, if $f: (B, \oplus, \odot) \longrightarrow (B, \oplus, \odot)$ is an automorphism, then we have

$$(B, \oplus) \stackrel{d}{\longleftrightarrow} \operatorname{Perm}(B, \odot)$$

$$\downarrow^{f} \qquad \downarrow^{C_{f}}$$

$$(B, \oplus) \stackrel{d}{\longleftrightarrow} \operatorname{Perm}(B, \odot);$$

using this observation we find

$$\operatorname{Aut}_{\mathcal{B}r}(B,\oplus,\odot) \cong \left\{ \alpha \in \operatorname{Aut}(B,\odot) \mid \alpha \left(\operatorname{Im} d\right) \alpha^{-1} \subseteq \operatorname{Im} d \right\}.$$

Classification of HGS and SB I

Classifying Skew Braces

To find the non-isomorphic G-skew braces of type N classify elements of the set

 $\mathcal{S}(G, N) = \{ H \subseteq \operatorname{Perm}(G) \mid H \text{ is regular, NLT, } H \cong N \},\$

and extract a maximal subset whose elements are not conjugate by any element of Aut (G).

Hopf-Galois Structures Parametrised by Skew Braces

Denote by B_G^N the isomorphism class of a *G*-skew brace of type N given by (B, \oplus, \odot) . Then the number of Hopf-Galois structures on L/K of type N is given by

$$e(G, N) = \sum_{B_G^N} \frac{|\operatorname{Aut} (G)|}{|\operatorname{Aut}_{\mathcal{B}r} (B_G^N)|}.$$

Classification of HGS and SB II

We would like to work with **holomorphs** instead of the **permutation groups**.

For a skew brace (B, \oplus, \odot) consider the action of (B, \odot) on (B, \oplus) by $(a, b) \mapsto a \odot b$. This yields to a map

$$m: (B, \odot) \longrightarrow \operatorname{Hol}(B, \oplus)$$
$$a \longmapsto (m_a: b \longmapsto a \odot b)$$

which is a regular embedding. In the above let λ be

Skew Braces and Regular Subgroups of Holomorph

Bachiller, Byott, Vendramin:

 $\left\{ \begin{array}{l} \text{isomorphism classes} \\ \text{of skew braces of} \\ \text{type } N, \, \text{i.e., with} \\ (B, \oplus) \cong N \end{array} \right\} \stackrel{\text{bij}}{\longleftrightarrow} \left\{ \begin{array}{l} \text{classes of regular subgroup of} \\ \text{Hol}(N) \text{ under } H_1 \sim H_2 \text{ if} \\ H_2 = \alpha H_1 \alpha^{-1} \text{ for some} \\ \alpha \in \text{Aut}(N) \end{array} \right.$

Another Characterisation of Automorphism Group $\operatorname{Aut}_{\mathcal{B}r}(B,\oplus,\odot) \cong \left\{ \alpha \in \operatorname{Aut}(B,\oplus) \mid \alpha (\operatorname{Im} m) \alpha^{-1} \subseteq \operatorname{Im} m \right\}$

Classification of HGS and SB III

Skew braces

To find the non-isomorphic G-skew braces of type N for a fixed N, classify elements of the set

$$\mathcal{S}'(G, N) = \{ H \subseteq \operatorname{Hol}(N) \mid H \text{ is regular, } H \cong G \},\$$

and extract a maximal subset whose elements are not conjugate by any element of Aut (N).

Skew Braces: Some Results

- \blacklozenge Rump (2007) cyclic braces
- Bachiller (2015) braces of order p^3
- \blacklozenge Nejabati Zenouz (2018, 2019) skew braces of order p^3
- ♦ Catino, Colazzo, Stefanelli (2017, 2018) semi-braces and skew braces with non-trivial annihilator
- Dietzel (2018) braces of order p^2q
- \blacklozenge Childs (2018, 2019) Correspondence and bi-skew braces
- \blacklozenge Nasybullov (2018) two-sided skew braces
- \blacklozenge Koch, Truman (2019) opposite braces
- \blacklozenge Alabadi, Byott (2019) skew braces of squarefree order
- ♦ Campedel, Caranti, Del Corso (2019) skew braces of order p^2q : the cyclic Sylow p-subgroup case
- \blacklozenge Acri, Bonatto (2019, 2020), skew braces of order $pq,\,p^2q$
- \blacklozenge Crespo (2019), skew braces of order $2p^2$

Skew Braces and Hopf-Galois Structures for p^3

Theorem 1 (Nejabati Zenouz, 2018)

Number of G-skew braces of type N, $\tilde{e}(G, N)$, for p > 3 prime

$\widetilde{e}(G,N)$	C_{p^3}	$C_{p^2} \times C_p$	C_p^3	$C_p^2 \rtimes C_p$	$\ C_{p^2} \rtimes C_p$
C_{p^3}	3	-	-	-	-
$C_{p^2} \times C_p$	-	9	-	-	4p + 1
C_p^3	-	-	5	2p + 1	-
$C_p^2 \rtimes C_p$	-	-	2p + 1	$2p^2 - p + 3$	-
$C_{p^2} \rtimes C_p$	-	4p + 1	-	-	$4p^2 - 3p - 1$

Corresponding Hopf-Galois structures e(G, N)

e(G, N)	C_{p^3}	$C_{p^2} \times C_p$	C_p^3	$C_p^2 \rtimes C_p$	$C_{p^2}\rtimes C_p$
$C_{p^{3}}$	p^2	-	-	-	-
$C_{p^2} \times C_p$	-	$(2p-1)p^2$	-	-	$(2p-1)(p-1)p^2$
C_p^3	-	-	$(p^4 + p^3 - 1)p^2$	$(p^3 - 1)(p^2 + p - 1)p^2$	-
$C_p^2 \rtimes C_p$	-	-	$(p^2 + p - 1)p^2$	$(2p^3 - 3p + 1)p^2$	-
$C_{p^2}\rtimes C_p$	-	$(2p-1)p^2$	-	-	$(2p-1)(p-1)p^2$

Skew Braces and Hopf-Galois Structures for p^3

Theorem 2 (Nejabati Zenouz, 2018)

Number of G-skew braces of type N, $\tilde{e}(G, N)$, for p = 3 prime

$\widetilde{e}(G,N)$	C_{27}	$C_9 \times C_3$	C_{3}^{3}	$C_3^2 \rtimes C_3$	$C_9 \rtimes C_3$
C_{27}	3	-	-	-	-
$C_9 \times C_3$	-	8	1	2	11
C_{3}^{3}	-	1	4	5	2
M_1	-	2	5	14	4
M_2	-	11	2	4	22

Corresponding Hopf-Galois structures e(G, N)

e(G, N)	C_{27}	$C_9 \times C_3$	C_{3}^{3}	$C_3^2 \rtimes C_3$	$C_9 \rtimes C_3$
C_{27}	9	-	-	-	-
$C_9 \times C_3$	-	39	6	12	78
C_{3}^{3}	-	624	339	1300	1248
M_1	-	48	51	317	96
M_2	-	39	6	12	78

Skew Braces and Hopf-Galois Structures for p^3

Theorem 3 (Nejabati Zenouz, 2018)

Number of G-skew braces of type N, $\tilde{e}(G, N)$, for p = 2 prime

$\widetilde{e}(G,N)$	C_8	$C_4 \times C_2$	C_{2}^{3}	D_8	Q_8
C_8	2	-	-	2	2
$C_4 \times C_2$	1	6	3	3	1
C_{2}^{3}	-	2	2	1	1
D_8	1	5	2	4	2
Q_8	1	1	1	2	2

Corresponding Hopf-Galois structures e(G, N)

e(G,N)	C_8	$C_4 \times C_2$	C_{2}^{3}	D_8	Q_8
C_8	2	-	-	2	2
$C_4 \times C_2$	4	10	4	6	2
C_{2}^{3}	-	42	8	42	14
D_8	2	14	6	6	2
Q_8	6	6	2	6	2

Skew Braces of Semi-direct Product Type

Remark

Note for
$$p > 3$$
 we have $p^2 \mid e(G, N)$, and for $p > 2$

 $\left|\operatorname{Aut}(N)\right|e(G,N)=\left|\operatorname{Aut}(G)\right|e(N,G) \text{ and } \widetilde{e}(G,N)=\widetilde{e}(N,G).$

Question

How general is the pattern
$$\tilde{e}(G, N) = \tilde{e}(N, G)$$
?

Proposition (Nejabati Zenouz, Acri and Bonatto)

Let P and Q be groups. Suppose $\alpha, \beta : Q \longrightarrow \operatorname{Aut}(P)$ are group homomorphisms such that $\operatorname{Im} \beta$ is an abelian group and $[\operatorname{Im} \alpha, \operatorname{Im} \beta] = 1.$

- We can form an $(P \rtimes_{\alpha} Q)$ -skew brace of type $P \rtimes_{\beta} Q$.
- **2** And an $(P \rtimes_{\beta} Q^{\mathrm{op}})$ -skew brace of type $P \rtimes_{\alpha} Q$.
- **③** Acri and Bonatto showed that $P \subset \ker \lambda$.

Skew Braces of Type $C_{p^n} \rtimes C_p$ and Corresponding Hopf-Galois Structures

Section Contents

Introduction

- The Yang-Baxter Equation and Skew Braces
- Hopf-Galois Structures and Skew Braces
- Automorphism Groups of Skew Braces
- Classification of Hopf-Galois Structures and Skew Braces
- Skew Braces and Hopf-Galois Structures of order p^3
- **2** Skew Braces and Hopf-Galois Structures of Type $C_{p^n} \rtimes C_p$
 - \bullet Motivation and the Group M_ϵ
 - \bullet Automorphisms of M_ϵ
 - The *p*-Sylow Subgroup of $\operatorname{Aut}(M_{\epsilon})$
 - Conjugation in $\operatorname{Aut}(M_{\epsilon})$
 - Subgroups of M_{ϵ} up to Automorphisms
 - Subgroups of $A(M_{\epsilon})$
 - Regular Subgroups of Holomorph
 - Regular Subgroups of $\operatorname{Hol}(M_{\epsilon})$ and Conjugation
 - Skew Braces of Type M_{ϵ}

Motivation

- Each column in the tables for Skew braces and Hopf-Galois Structures of Order p^3 , except C_{p^3} case, is (was) new.
- Skew Braces and Hopf-Galois Structures of Heisenberg Type, J. Algebra, 2019, that is (B, ⊕) is isomorphic to

$$M \stackrel{\text{def}}{=} \langle \rho, \sigma, \tau \mid \rho^p = \sigma^p = \tau^p = 1, \ \sigma \rho = \rho \sigma, \ \tau \rho = \rho \tau, \ \tau \sigma = \rho \sigma \tau \rangle.$$

• Note, $M \cong C_p^2 \rtimes C_p$. Idea: I could use for $\epsilon = 0, 1$,

$$M_{\epsilon} \stackrel{\text{def}}{=} \left\langle \rho, \sigma, \tau \mid \rho^{p} = \sigma^{p} = \tau^{p} = 1, \ \sigma \rho = \rho \sigma, \ \tau \rho = \rho \tau, \ \tau \sigma = \rho^{1-\epsilon} \sigma \tau \right\rangle.$$

28

• Now
$$M_0 = M$$
 and $M_1 = C_p^3$. Then
Aut $(M_{\epsilon}) \subseteq \operatorname{GL}_3(\mathbb{F}_p),$

and handle both cases at once: too late, too far...

The Group M_{ϵ}

• Implement the idea for $C_{p^2} \rtimes C_p$ for p prime, so

$$M_{\epsilon} \stackrel{\text{def}}{=} \left\langle \sigma, \tau \mid \sigma^{p^2} = \tau^p = 1, \ \tau \sigma = \sigma^{p^{\epsilon+1}} \sigma \tau \right\rangle.$$

Change to n ≥ 2 with p > 3: groups of the form C_{pⁿ} ⋊ C_p.
Note, a homomorphism

$$\alpha: C_p \longrightarrow \operatorname{Aut}(C_{p^n}) \cong C_{p^{n-1}} \times C_{p-1}$$

is either trivial, or has a unique image of order p.

• Therefore,

$$M_{\epsilon} \stackrel{\text{def}}{=} \left\langle \sigma, \tau \mid \sigma^{p^n} = \tau^p = 1, \ \tau \sigma = \sigma^{p^m} \sigma \tau \right\rangle \cong C_{p^n} \rtimes C_p,$$

where $m = n + \epsilon - 1$, and m = n or m = n - 1 only.

• Nonabelian group when $\epsilon = 0$ and abelian when $\epsilon = 1$. 29/52

• For positive integers a_1, a_2, a_3, a_4, r we have

$$\sigma^{a_1}\tau^{a_2}\sigma^{a_3}\tau^{a_4} = \sigma^{a_2a_3p^m}\sigma^{a_1+a_3}\tau^{a_2+a_4},$$

$$(\sigma^{a_1}\tau^{a_2})^r = \sigma^{\frac{1}{2}a_1a_2r(r-1)p^m}\sigma^{a_1r}\tau^{a_2r}.$$

• The commutators of two elements $u = \sigma^{u_1} \tau^{u_2}$ and $v = \sigma^{v_1} \tau^{v_2}$ is given by

$$[u,v] = uvu^{-1}v^{-1} = \sigma^{(u_1v_2 - v_1u_2)p^m}$$

Automorphisms of M_{ϵ}

For $\epsilon = 0, 1$ let

$$\mathcal{L}_{\epsilon}(\mathbb{F}_p) \stackrel{\text{def}}{=} \left\{ A \in \mathrm{GL}_2(\mathbb{F}_p) \mid A = \begin{pmatrix} a_1 & 0\\ a_3 & a_4^{\epsilon} \end{pmatrix} \right\}$$

Lemma

Every automorphism of $\alpha \in \operatorname{Aut}(M_{\epsilon})$ can be written as

$$\alpha = \begin{bmatrix} a_1 & a_2 p^{n-1} \\ a_3 & a_4^{\epsilon} \end{bmatrix}, \text{ with } \sigma^{\alpha} = \sigma^{a_1} \tau^{a_3}, \ \tau^{\alpha} = \sigma^{a_2 p^{n-1}} \tau^{a_4^{\epsilon}},$$

where $a_1 = 0, ..., p^n - 1$ and $a_2, a_3, a_4 = 0, ..., p - 1$ such that if we reduce the entries modulo p, then we have an element of $L_{\epsilon}(\mathbb{F}_p)$. In particular, we have

$$|\operatorname{Aut}(M_{\epsilon})| = (p-1)^{\epsilon+1} p^{n+1}$$

Idea of Proof

• Let $\alpha \in \operatorname{Aut}(M_{\epsilon})$. Then we have

$$\sigma^{\alpha} = \sigma^{a_1} \tau^{a_3}$$
$$\tau^{\alpha} = \sigma^{a_2} \tau^{a_4}$$

for some $a_1, a_2, a_3, a_4 \in \mathbb{Z}$.

- Write $\alpha = \begin{bmatrix} a_1 & a_2 \\ a_3 & a_4 \end{bmatrix}$, first row matters modulo p^n and the second row modulo p.
- Now $\tau^p = 1$ implies $a_2 \equiv 0 \mod p^{n-1}$.
- For α to be injective we need $a_1, a_4 \not\equiv 0 \mod p$.
- We need $(\sigma^{\alpha})^{p^m+1} \tau^{\alpha} = \tau^{\alpha} \sigma^{\alpha}$, implies that we need $a_1 a_4 \equiv a_1 \mod p^{n-m}$.

• Thus, $a_4 = 1$ if m = n - 1 and $a_4 = 1, ..., p - 1$ if m = n.

Given two automorphisms

$$\alpha = \begin{bmatrix} a_1 & a_2 p^{n-1} \\ a_3 & a_4^{\epsilon} \end{bmatrix} \text{ and } \beta = \begin{bmatrix} b_1 & b_2 p^{n-1} \\ b_3 & b_4^{\epsilon} \end{bmatrix},$$

then the composition $\alpha\beta$ corresponds to

$$\alpha\beta = \begin{bmatrix} a_1b_1 + a_2b_3p^{n-1} + \frac{1}{2}a_1a_3b_1(b_1 - 1)p^m & (a_1b_2 + a_2b_4^{\epsilon})p^{n-1} \\ a_3b_1 + a_4^{\epsilon}b_3 & (a_4b_4)^{\epsilon} \end{bmatrix}$$

33/52

Structure of $\operatorname{Aut}(M_{\epsilon})$

Lemma

The group $\operatorname{Aut}(M_{\epsilon})$ fits in the exact sequence

$$1 \longrightarrow C_{p^{n-1}} \times C_p \longrightarrow \operatorname{Aut}(M_{\epsilon}) \longrightarrow \operatorname{L}_{\epsilon}(\mathbb{F}_p) \longrightarrow 1.$$

Idea of Proof I

• For $\alpha \in \operatorname{Aut}(M_{\epsilon})$ we have $\alpha(\sigma^p) = \sigma^{a_1 p}$.

• Then $Z \stackrel{\text{def}}{=} \langle \sigma^p \rangle \cong C_{p^{n-1}}$ is a characteristic subgroup of M_{ϵ} .

• Now α descends on $M_{\epsilon}/Z \cong C_p^2$, so we have a map

$$\Psi : \operatorname{Aut}(M_{\epsilon}) \longrightarrow \operatorname{GL}_2(\mathbb{F}_p).$$

• Note that if $\alpha \in \ker \Psi$, then we must have

$$\sigma^{\alpha} = \sigma^{a_1 p + 1}$$

$$\tau^{\alpha} = \sigma^{a_2 p^{n-1}} \tau,$$

• This gives

$$\ker \Psi = \left\{ \begin{bmatrix} a_1 p + 1 & a_2 p^{n-1} \\ 0 & 1 \end{bmatrix} \mid a_1 = 0, ..., p^{n-1} - 1, \ a_2 = 0, ..., p - 1 \right\}.$$

$$\frac{35/52}{35}$$

Idea of Proof II

• Take the two automorphisms

$$\beta_1 = \begin{bmatrix} p+1 & 0\\ 0 & 1 \end{bmatrix}, \ \beta_2 = \begin{bmatrix} 1 & p^{n-1}\\ 0 & 1 \end{bmatrix} \in \ker \Psi.$$

• Note first that $\beta_2^p = 1$ and $\beta_1 \beta_2 = \beta_2 \beta_1$.

• Use the Lemma that for p > 3 and $p \nmid a$ we have

$$(p+1)^{ap^{r}} = dp^{r+4} + cp^{r+3} + bp^{r+2} + ap^{r+1} + 1,$$

for some integers b, c, d, which gives

$$\beta_1^{p^r}(\sigma) = \sigma^{dp^{r+4} + cp^{r+3} + bp^{r+2} + p^{r+1} + 1},$$

• Gives that β_1 has order p^{n-1} , so

$$\ker \Psi = \langle \beta_1, \beta_2 \rangle \cong C_{p^{n-1}} \times C_p.$$

• Follows from earlier Lemma that $\operatorname{Im} \Psi = L_{\epsilon}(\mathbb{F}_p)$.

36/52

The *p*-Sylow Subgroup of $\operatorname{Aut}(M_{\epsilon})$

Lemma

The group $\operatorname{Aut}(M_{\epsilon})$ has a unique p-Sylow subgroup $\operatorname{A}(M_{\epsilon})$ isomorphic to

$$\mathcal{A}(M_{\epsilon}) = \langle \alpha_1, \alpha_2, \alpha_3 \rangle \cong (C_{p^{n-1}} \times C_p) \rtimes C_p$$

generated by automorphisms

$$\alpha_1 \stackrel{\text{def}}{=} \begin{bmatrix} p+1 & 0\\ 0 & 1 \end{bmatrix}, \ \alpha_2 \stackrel{\text{def}}{=} \begin{bmatrix} 1 & 0\\ 1 & 1 \end{bmatrix}, \ \alpha_3 \stackrel{\text{def}}{=} \begin{bmatrix} 1 & p^{n-1}\\ 0 & 1 \end{bmatrix},$$

which satisfy

$$\alpha_1^{p^{n-1}} = \alpha_2^p = \alpha_3^p = 1,$$

$$\alpha_2 \alpha_1 = \alpha_1 \alpha_2, \ \alpha_3 \alpha_1 = \alpha_1 \alpha_3, \ \alpha_3 \alpha_2 = \alpha_1^{p^{n-2}} \alpha_2 \alpha_3.$$

Generalities of $\operatorname{Aut}(M_{\epsilon})$ and $\operatorname{A}(M_{\epsilon})$

For positive integers a_1, a_2, a_3, a_4, r we have

$$\begin{aligned} \alpha_1^{a_1} \alpha_2^{a_2} \alpha_3^{a_3} \alpha_1^{b_1} \alpha_2^{b_2} \alpha_3^{b_3} &= \alpha_1^{a_3 b_2 p^{n-2}} \alpha_1^{a_1 + b_1} \alpha_2^{a_2 + b_2} \alpha_3^{a_3 + b_3}, \\ (\alpha_1^{a_1} \alpha_2^{a_2} \alpha_3^{a_3})^r &= \alpha_1^{\frac{1}{2} a_2 a_3 r(r-1) p^{n-2}} \alpha_1^{a_1 r} \alpha_2^{a_2 r} \alpha_3^{a_3 r}. \end{aligned}$$

Lemma

Let $\alpha \in \operatorname{Aut}(M_{\epsilon})$. Then we can always write $\alpha = \alpha_3^{r_3}\beta$, for some r_3 and some $\beta = \begin{bmatrix} b_1 & 0 \\ b_3 & b_4^{\epsilon} \end{bmatrix} \in \operatorname{Aut}(M_{\epsilon})$, and we find $\alpha^{-1} = \begin{bmatrix} b_1^{-1} - \frac{1}{2}b_1^{-1}(b_1^{-1} - 1) b_3 p^m & 0 \\ -b_1^{-1}b_3 b_4^{-\epsilon} & b_4^{-\epsilon} \end{bmatrix} \alpha_3^{-r_3}.$

In particular, we have

$$\alpha \left(\alpha_1^{a_1} \alpha_2^{a_2} \alpha_3^{a_3} \right) \alpha^{-1} = \alpha_1^{a_2 r_3 b_1^{-1} b_4^{\epsilon} p^{n-2} + \frac{1}{2} a_2 \left(b_1^{-1} - 1 \right) p^{m-1} - a_3 b_3 b_4^{\epsilon} p^{n-2} }$$

$$\alpha_1^{a_1} \alpha_2^{a_2 b_1^{-1} b_4^{\epsilon}} \alpha_3^{a_3 b_1 b_4^{-\epsilon}} .$$

Subgroups of M_{ϵ} up to Automorphisms

Lemma

The strict subgroups of M_{ϵ} are all abelian and given by the following table (say for n > 2).

For 1 < r < n and a = 1, ..., p - 1.

39/52

Subgroups of $A(M_{\epsilon})$

Lemma

Assume n is large. Then subgroups of $A(M_{\epsilon})$ are of the following form

for some a_1, a_2, a_3, r .

Regular Subgroups of Holomorph

- The holomorph of a group N by
 Hol(N) ^{def} = N ⋊ Aut(N) = {ηα | η ∈ N, α ∈ Aut(N)},
 and Θ : Hol(N) → Aut(N) natural projection.
- For $u, v \in N$ and $\alpha, \beta \in Aut(N)$ write

$$(u\alpha)(v\beta) = uv^{\alpha}\alpha\beta = u(\alpha \cdot v)\alpha\beta.$$

• Regular subgroups H with $|\Theta(H)| = m$ are of the form

$$H = \langle \eta_1, ..., \eta_r, v_1 \alpha_1, ..., v_s \alpha_s \rangle,$$

for some $v_1, ..., v_s \in N$, if such elements exist.

• Let $H_1 = \langle \eta_1, ..., \eta_r \rangle \subseteq N$, and $H_2 = \langle \alpha_1, ..., \alpha_s \rangle \subseteq \operatorname{Aut}(N)$, where $|H_1| = \frac{|H|}{m}$ and $|H_2| = m$. 41/52

Generalities of $\operatorname{Hol}(N)$

• We need to check the "words" and "relations" of

$$H_2 = \langle \alpha_1, ..., \alpha_s \rangle \,.$$

• For every relation $R(\alpha_1, ..., \alpha_s) = 1$ on H_2 , we need

$$R(v_1\alpha_1, ..., v_s\alpha_s) \in H_1$$

for |H| = |N|.

• For every word $W(\alpha_1, ..., \alpha_s) \neq 1$ on H_2 , we need

$$W(v_1\alpha_1, ..., v_s\alpha_s)W(\alpha_1, ..., \alpha_s)^{-1} \notin H_1$$

for H to act freely.

More Generalities of Hol(N)

For example, let $r_i = \operatorname{Ord}(\alpha_i)$ and consider regular subgroup

$$H = \langle \eta_1, ..., \eta_r, v_1 \alpha_1, ..., v_s \alpha_s \rangle.$$

Then some of the conditions are of the following form

$$(v_i \alpha_i)^{r_i} = v_i \alpha_i \cdot v_i \cdots \alpha_i^{r_i - 1} \cdot v_i \alpha_i^{r_i}$$

= $v_i \alpha_i \cdot v_i \cdots \alpha_i^{r_i - 1} \cdot v_i \in H_1$ and
 $(v_i \alpha_i)^s \alpha^{-s} = v_i \alpha_i \cdot v_i \cdots \alpha_i^{s-1} \cdot v_i \notin H_1$, for $0 < s < r_i$,
 $(v_i \alpha_i) (\eta_j) (v_i \alpha_i)^{-1} = v_i (\alpha_i \cdot \eta_j) v_i^{-1} \in H_1$ for all i, j .

If H and \widetilde{H} are conjugate by an element of $\beta \in \operatorname{Aut}(N)$, then $\beta(H_1) \subseteq \widetilde{H}_1$ and $\beta H_2 \beta^{-1} \subseteq \widetilde{H}_2$, more precisely,

$$\beta H\beta^{-1} = \left\langle \eta_1^{\beta}, ..., \eta_r^{\beta}, v_1^{\beta}\beta\alpha_1\beta^{-1}, ..., v_s^{\beta}\beta\alpha_s\beta^{-1} \right\rangle \subseteq \widetilde{H},$$

43/52

so can consider subgroups of N up to automorphisms.

Regular Elements of $\operatorname{Hol}(M_{\epsilon})$

Regular subgroups of $\operatorname{Hol}(M_{\epsilon})$ are contained in

$$M_{\epsilon} \rtimes A(M_{e}) = \langle \sigma, \tau, \alpha_{1}, \alpha_{2}, \alpha_{3} \rangle$$

$$\alpha_{1} \stackrel{\text{def}}{=} \begin{bmatrix} p+1 & 0\\ 0 & 1 \end{bmatrix}, \ \alpha_{2} \stackrel{\text{def}}{=} \begin{bmatrix} 1 & 0\\ 1 & 1 \end{bmatrix}, \ \alpha_{3} \stackrel{\text{def}}{=} \begin{bmatrix} 1 & p^{n-1}\\ 0 & 1 \end{bmatrix}$$

Lemma

Let $g = v\alpha_1^{a_1}\alpha_2^{a_2}\alpha_3^{a_3}$ for natural numbers a_1, a_2, a_3, r , and an element $v = \sigma^{v_1}\tau^{v_2} \in M_{\epsilon}$. Then we have

$$g^{r} = \sigma^{k_{r}rp^{n-1} + v_{1}\sum_{j=1}^{r-1}(p+1)^{a_{1}j} - 1} v^{r} \tau^{\frac{1}{2}r(r-1)a_{2}v_{1}} \left(\alpha_{1}^{a_{1}}\alpha_{2}^{a_{2}}\alpha_{3}^{a_{3}}\right)^{r}$$

for some integer k_r . In particular,

$$g^{p^r} = \sigma^{b_r v_1 p^{r+1} + v_1 p^r} \alpha_1^{a_1 p^r}$$
 for some integer b_r .

Thus if g is regular, its order "depends" on v_1 .

Regular Subgroups of $\operatorname{Hol}(M_{\epsilon})$

Proposition

Let $G \subset \operatorname{Hol}(M_{\epsilon})$ be a regular subgroups different from M_{ϵ} . Let $H_1 = G \cap M_{\epsilon} = \langle u, v \rangle$ and $H_2 = \Theta(G) \subseteq \operatorname{Aut}(M_{\epsilon})$. The following holds.

- If $\sigma \tau^d \in H_1$, for some d, then $|\Theta(G)| = p$.
- **2** If $\sigma \notin H_1$, then $\sigma^{p^r} \in H_1$ for some r < n.
- **③** If $\tau \in H_1$, then H_2 must have one generator.
- The subgroup G is generated by two elements, and it cannot be outside of the forms

$$\left\langle \sigma\tau^{d}, \tau^{w_{2}}\alpha_{1}^{a_{1}p^{n-2}}\alpha_{2}^{a_{2}}\alpha_{3}^{a_{3}} \right\rangle, \left\langle \tau, \sigma^{w_{1}}\alpha_{1}^{a_{1}}\alpha_{2}^{a_{2}}\alpha_{3}^{a_{3}} \right\rangle, \\ \left\langle x\alpha_{1}^{a_{1}}, y\alpha_{2}^{a_{2}}\alpha_{3}^{a_{3}} \right\rangle, \left\langle x\alpha_{1}^{a_{1}}\alpha_{2}, y\alpha_{1}^{a_{2}}\alpha_{3} \right\rangle.$$

for some $a_1, a_2, a_3, d, w_1, w_2$, and $x, y \in M_{\epsilon}$.

In order to find the non-isomorphic skew braces we need a general conjugation formula.

Theorem

Let $g = v\alpha_1^{a_1}\alpha_2^{a_2}\alpha_3^{a_3}$ for natural numbers a_1, a_2, a_3, r , and an element $v = \sigma^{v_1}\tau^{v_2} \in M_{\epsilon}$. Take $\alpha = \alpha_3^{r_3}\beta \in \operatorname{Aut}(M_{\epsilon})$. Then we have

$$\alpha g^{r} \alpha^{-1} = \sigma^{k_{r}rp^{n-1}+b_{1}v_{1}\sum_{j=1}^{r-1}(p+1)^{a_{1}j}-1} (\alpha \cdot v)^{r} \tau^{\frac{1}{2}r(r-1)a_{2}b_{1}v_{1}}$$

$$\alpha_{1}^{a_{2}r_{3}b_{1}^{-1}b_{4}^{\epsilon}rp^{n-2}+a_{2}\frac{1}{2}(b_{1}^{-1}-1)rp^{m-1}-a_{3}b_{3}b_{4}^{\epsilon}rp^{n-2}+\frac{1}{2}a_{2}a_{3}r(r-1)p^{n-2}}$$

$$\alpha_{1}^{a_{1}r} \alpha_{2}^{a_{2}b_{1}^{-1}b_{4}^{\epsilon}r} \alpha_{3}^{a_{3}b_{1}b_{4}^{-\epsilon}r}$$

for some integer k_r .

Now using the Proposition and Theorem in the previous two slides go through all relevant regular subgroups according to $|\Theta(G)| = p^r$. For each r = 1, ..., n:

- Classify regular subgroups.
- **2** Find skew braces using conjugation formula.
- **③** Determine automorphism groups of skew braces.
- Count Hopf-Galois structures as parametrised by skew braces.

Example $|\Theta(G)| = p$

Proposition

For $|\Theta(G)| = p$ there are exactly $5p - 7 \ M_0$ -skew braces of M_0 type and 5 M_1 -skew braces of M_0 type. Furthermore, we have 5 M_0 -skew braces of M_1 type and 3 M_1 -skew braces of M_1 type. I.e., Write $\tilde{e}(G, N, p)$, the number of skew braces with $|\Theta(G)| = p$. Then we have

$$\widetilde{e}(M_0, M_0, p) = 5p - 7,$$

 $\widetilde{e}(M_1, M_0, p) = 5,$
 $\widetilde{e}(M_0, M_1, p) = 5,$
 $\widetilde{e}(M_1, M_1, p) = 3.$

Skew Braces of M_0 -type

automorphism groups of M_0 -skew braces of M_0 type

$$\begin{aligned} \operatorname{Aut}_{\mathcal{B}r}\left(\left\langle \tau, \sigma \alpha_{1}^{p^{n-2}} \right\rangle\right) &= \left\{\alpha_{3}^{r_{3}} \begin{bmatrix} b_{1} & 0 \\ b_{3} & 1 \end{bmatrix} \in \operatorname{Aut}(M_{0}) \mid b_{1} \equiv 1 \mod p\right\} \\ \operatorname{Aut}_{\mathcal{B}r}\left(\left\langle \tau, \sigma \alpha_{3}^{a_{3}} \right\rangle\right) &= \left\{\alpha_{3}^{r_{3}} \begin{bmatrix} b_{1} & 0 \\ b_{3} & 1 \end{bmatrix} \in \operatorname{Aut}(M_{0}) \mid b_{3} = 0\right\} \text{ for } a_{3} \neq 0, 1 \\ \operatorname{Aut}_{\mathcal{B}r}\left(\left\langle \tau, \sigma \alpha_{2}^{t} \alpha_{3}^{a_{3}} \right\rangle\right) &= \left\{\alpha_{3}^{r} \begin{bmatrix} b_{1} & 0 \\ b_{3} & 1 \end{bmatrix} \in \operatorname{Aut}(M_{0}) \mid b_{1} \equiv \pm 1 \mod p\right\} \text{ for } a_{3} \neq 1, \ t = 1, \delta \\ \operatorname{Aut}_{\mathcal{B}r}\left(\left\langle \sigma, \tau \alpha_{1}^{a_{1}p^{n-2}} \right\rangle\right) &= \left\{\alpha_{3}^{r_{3}} \begin{bmatrix} b_{1} & 0 \\ b_{3} & 1 \end{bmatrix} \in \operatorname{Aut}(M_{0}) \mid b_{3} = 0\right\} \text{ for } a_{1} \neq -1, 0 \\ \operatorname{Aut}_{\mathcal{B}r}\left(\left\langle \sigma, \tau \alpha_{1}^{a_{1}p^{n-2}} \alpha_{3} \right\rangle\right) &= \left\{\alpha_{3}^{r_{3}} \begin{bmatrix} b_{1} & 0 \\ b_{3} & 1 \end{bmatrix} \in \operatorname{Aut}(M_{0}) \mid b_{3} = 0, \ b_{1} = 1 \mod p\right\} \text{ for } a_{1} \neq -1 \end{aligned}$$

automorphism groups M_1 -skew braces of M_0 type

$$\operatorname{Aut}_{\mathcal{B}_{r}}\left(\langle \tau, \sigma\alpha_{3} \rangle\right) = \left\{ \alpha_{3}^{r_{3}} \begin{bmatrix} b_{1} & 0 \\ b_{3} & 1 \end{bmatrix} \in \operatorname{Aut}(M_{0}) \mid b_{3} = 0 \right\}$$
$$\operatorname{Aut}_{\mathcal{B}_{r}}\left(\langle \tau, \sigma\alpha_{2}^{t}\alpha_{3} \rangle\right) = \left\{ \alpha_{3}^{\widetilde{r}} \begin{bmatrix} b_{1} & 0 \\ b_{3} & 1 \end{bmatrix} \in \operatorname{Aut}(M_{0}) \mid b_{1} \equiv \pm 1 \mod p \right\} \text{ for } t = 1, \delta$$
$$\operatorname{Aut}_{\mathcal{B}_{r}}\left(\left\langle \sigma, \tau\alpha_{1}^{-p^{n-2}} \right\rangle\right) = \left\{ \alpha_{3}^{r_{3}} \begin{bmatrix} b_{1} & 0 \\ b_{3} & 1 \end{bmatrix} \in \operatorname{Aut}(M_{0}) \mid b_{3} = 0 \right\}$$
$$\operatorname{Aut}_{\mathcal{B}_{r}}\left(\left\langle \sigma, \tau\alpha_{1}^{-p^{n-2}}\alpha_{3} \right\rangle\right) = \left\{ \alpha_{3}^{r_{3}} \begin{bmatrix} b_{1} & 0 \\ b_{3} & 1 \end{bmatrix} \in \operatorname{Aut}(M_{0}) \mid b_{3} = 0, \ b_{1} \equiv 1 \mod p \right\}$$

49/52

Skew Braces of M_1 -type

automorphism groups of M_0 -skew braces of M_1 type

$$\begin{aligned} \operatorname{Aut}_{\mathcal{B}_{r}}\left(\langle \tau, \sigma \alpha_{3} \rangle\right) &= \left\{ \alpha_{3}^{r_{3}} \begin{bmatrix} b_{1} & 0 \\ b_{3} & b_{4} \end{bmatrix} \in \operatorname{Aut}(M_{1}) \mid b_{3} = 0, \ b_{4} = 1 \right\} \\ \operatorname{Aut}_{\mathcal{B}_{r}}\left(\langle \tau, \sigma \alpha_{2}^{t} \alpha_{3} \rangle\right) &= \left\{ \alpha_{3}^{\widetilde{r}} \begin{bmatrix} b_{1} & 0 \\ b_{3} & b_{4} \end{bmatrix} \in \operatorname{Aut}(M_{1}) \mid b_{1}^{2} = b_{4} \equiv 1 \mod p \right\} \text{ for } t = 1, \delta, \\ \operatorname{Aut}_{\mathcal{B}_{r}}\left(\left\langle \sigma, \tau \alpha_{1}^{p^{n-2}} \right\rangle\right) &= \left\{ \alpha_{3}^{r_{3}} \begin{bmatrix} b_{1} & 0 \\ b_{3} & b_{4} \end{bmatrix} \in \operatorname{Aut}(M_{1}) \mid b_{3} = 0, \ b_{4} = 1 \right\} \\ \operatorname{Aut}_{\mathcal{B}_{r}}\left(\left\langle \sigma, \tau \alpha_{1}^{p^{n-2}} \alpha_{3} \right\rangle\right) &= \left\{ \alpha_{3}^{r_{3}} \begin{bmatrix} b_{1} & 0 \\ b_{3} & b_{4} \end{bmatrix} \in \operatorname{Aut}(M_{1}) \mid b_{3} = 0, \ b_{1} = b_{4} \equiv 1 \mod p \right\} \end{aligned}$$

automorphism groups of M_1 -skew braces of M_1 type

$$\operatorname{Aut}_{\mathcal{B}r}\left(\left\langle \tau, \sigma \alpha_{1}^{p^{n-2}} \right\rangle\right) = \left\{\alpha_{3}^{r_{3}} \begin{bmatrix} b_{1} & 0\\ b_{3} & b_{4} \end{bmatrix} \in \operatorname{Aut}(M_{1}) \mid b_{1} \equiv 1 \mod p\right\}$$
$$\operatorname{Aut}_{\mathcal{B}r}\left(\left\langle \tau, \sigma \alpha_{2} \right\rangle\right) = \left\{\alpha_{3}^{\widetilde{r}} \begin{bmatrix} b_{1} & 0\\ b_{3} & b_{4} \end{bmatrix} \in \operatorname{Aut}(M_{1}) \mid b_{1}^{2} = b_{4} \mod p\right\}$$
$$\operatorname{Aut}_{\mathcal{B}r}\left(\left\langle \sigma, \tau \alpha_{3} \right\rangle\right) = \left\{\alpha_{3}^{r_{3}} \begin{bmatrix} b_{1} & 0\\ b_{3} & b_{4} \end{bmatrix} \in \operatorname{Aut}(M_{1}) \mid b_{3} = 0, \ b_{1} \equiv b_{4}^{2} \mod p\right\}$$

for some known \tilde{r} .

50/52

Corresponding Hopf-Galois Structures

Theorem

Write e(G, N, p), the number of Hopf-Galois structures with $|\Theta(G)| = p$. Then we have

$$e(M_0, M_0, p) = 2p^3 - 2p^2 - p - 1,$$

$$e(M_1, M_0, p) = 2(p - 1)p^2,$$

$$e(M_0, M_1, p) = 2p^2,$$

$$e(M_1, M_1, p) = (2p + 1)(p - 1).$$

Proof.

Follows by using

$$e(G, N, p) = \sum_{B_{G,p}^{N}} \frac{|\operatorname{Aut}(G)|}{|\operatorname{Aut}_{\mathcal{B}r}(B_{G,p}^{N})|}$$

and $|Aut(M_{\epsilon})| = (p-1)^{\epsilon+1}p^{n+1}$.

- The case for r = 2, ..., n are work in progress...
- The main ingredient for calculations is encapsulated by the conjugation formula for $\alpha g^r \alpha^{-1}$.
- Remains to check that if $M_{\epsilon} \hookrightarrow \operatorname{Hol}(G)$ is a regular embedding, for some G, then $G \cong M_0$ or M_1 ?
- In the above setting G must have at least two generators.
- Ideas can extend to a larger project on metacyclic *p*-groups.

Thank you for your attention!