Skew Braces with Additive Group Isomorphic to $C_{p^{n}} \rtimes C_{p}$ and
 Corresponding Hopf-Galois Structures

> Kayvan Nejabati Zenouz¹
> University of Greenwich

Hopf algebras and Galois module theory Conference
University of Nebraska (at Virtual) Omaha
May 25, 2020

[^0]
Contents

(1) Introduction

- The Yang-Baxter Equation and Skew Braces
- Hopf-Galois Structures and Skew Braces
- Automorphism Groups of Skew Braces
- Classification of Hopf-Galois Structures and Skew Braces
- Skew Braces and Hopf-Galois Structures of order p^{3}
(2) Skew Braces and Hopf-Galois Structures of Type $C_{p^{n}} \rtimes C_{p}$
- Motivation and the Group M_{ϵ}
- Automorphisms of M_{ϵ}
- The p-Sylow Subgroup of $\operatorname{Aut}\left(M_{\epsilon}\right)$
- Conjugation in $\operatorname{Aut}\left(M_{\epsilon}\right)$
- Subgroups of M_{ϵ} up to Automorphisms
- Subgroups of $A\left(M_{\epsilon}\right)$
- Regular Subgroups of Holomorph
- Regular Subgroups of $\operatorname{Hol}\left(M_{\epsilon}\right)$ and Conjugation
- Skew Braces of Type M_{ϵ}

Overview

First Part: brief preliminaries, notations, literature on

Yang-Baxter Equation

Skew Braces

Hopf-Galois Structures and Connections

Second Part: results of work in progress on
Skew Braces and Hopf-Galois Structures of Type

$$
M_{\epsilon} \stackrel{\text { def }}{=} C_{p^{n}} \rtimes C_{p}
$$

$\operatorname{Aut}\left(M_{\epsilon}\right) \quad$ Subgroups of M_{ϵ} and $\left.\operatorname{Aut}\left(M_{\epsilon}\right)\right\rfloor \quad \operatorname{Hol}\left(M_{\epsilon}\right)$

Section Contents

(1) Introduction

- The Yang-Baxter Equation and Skew Braces
- Hopf-Galois Structures and Skew Braces
- Automorphism Groups of Skew Braces
- Classification of Hopf-Galois Structures and Skew Braces
- Skew Braces and Hopf-Galois Structures of order p^{3}
- Motivation and the Group M_{ϵ}
- Automorphisms of M_{ϵ}
- The p-Sylow Subgroup of $\operatorname{Aut}\left(M_{\epsilon}\right)$
- Conjugation in $\operatorname{Aut}\left(M_{\epsilon}\right)$
- Subgroups of M_{ϵ} up to Automorphisms
- Subgroups of $A\left(M_{\epsilon}\right)$
- Regular Subgroups of Holomorph
- Regular Subgroups of $\operatorname{Hol}\left(M_{\epsilon}\right)$ and Conjugation
- Skew Braces of Type M_{ϵ}

The Yang-Baxter Equation

For a vector space V, an element

$$
R \in \mathrm{GL}(V \otimes V)
$$

is said to satisfy the Yang-Baxter equation (YBE) if

$$
(R \otimes I)(I \otimes R)(R \otimes I)=(I \otimes R)(R \otimes I)(I \otimes R)
$$

holds.
This equation can be depicted by

Set-Theoretic Yang-Baxter Equation

In 1992 Drinfeld suggested studying the simplest class of solutions arising from the set-theoretic version of this equation.

Definition

Let X be a nonempty set and

$$
\begin{aligned}
r: X \times X & \longrightarrow X \times X \\
(x, y) & \longmapsto\left(f_{x}(y), g_{y}(x)\right)
\end{aligned}
$$

a bijection. Then (X, r) is a set-theoretic solution of YBE if

$$
(r \times \mathrm{id})(\mathrm{id} \times r)(r \times \mathrm{id})=(\mathrm{id} \times r)(r \times \mathrm{id})(\mathrm{id} \times r)
$$

holds. The solution (X, r) is called non-degenerate if $f_{x}, g_{x} \in \operatorname{Perm}(X)$ for all $x \in X$ and involutive if $r^{2}=\mathrm{id}$.

Skew Braces

Definition

A (left) skew brace is a triple (B, \oplus, \odot) which consists of a set B together with two operations \oplus and \odot so that (B, \oplus) and (B, \odot) are groups such that for all $a, b, c \in B$:

$$
a \odot(b \oplus c)=(a \odot b) \ominus a \oplus(a \odot c),
$$

where $\ominus a$ is the inverse of a with respect to the operation \oplus.

Remark

A skew brace is called two-sided if

$$
(b \oplus c) \odot a=(b \odot a) \ominus a \oplus(c \odot a),
$$

and a bi-skew brace if

$$
a \oplus(b \odot c)=(a \oplus b) \odot a^{-1} \odot(a \oplus c) .
$$

Skew Braces

Example

Any group (B, \oplus) with

$$
a \odot b=a \oplus b \quad(\text { similarly with } a \odot b=b \oplus a)
$$

is a skew brace. This is the trivial skew brace structure.

Notation

- We call a skew brace (B, \oplus, \odot) such that $(B, \oplus) \cong N$ and $(B, \odot) \cong G$ a G-skew brace of type N.
- A skew brace (B, \oplus, \odot) is called a brace if (B, \oplus) is abelian, i.e., a skew brace of abelian type.

Braces were introduced by Rump in 2007 as a generalisation of radical rings. They provide non-degenerate, involutive set-theoretic solutions of the YBE.

Skew Braces: History

Skew braces generalise
braces and were introduced
by Guarnieri and
Vendramin in 2017.

> They provide non-degenerate set-theoretic solutions of the Yang-Baxter equation.

Their connection to ring theory and Hopf-Galois structures was studied by Bachiller, Byott,
Smoktunowicz, and
Vendramin.

Skew Braces and the YBE

Theorem (Guarnieri and Vendramin)

Let (B, \oplus, \odot) be a skew brace. Then the map

$$
\begin{aligned}
r_{B}: B \times B & \longrightarrow B \times B \\
(a, b) & \longmapsto\left(\ominus a \oplus(a \odot b),(\ominus a \oplus(a \odot b))^{-1} \odot a \odot b\right)
\end{aligned}
$$

is a non-degenerate set-theoretic solution of the YBE, which is involutive if and only if (B, \oplus, \odot) is a brace.

Hopf-Galois Structures

For L / K extension of fields with $G=\operatorname{Gal}(L / K)$, Hopf-Galois structures are K-Hopf algebras together with an action on L.

Definition

A Hopf-Galois structure on L / K consists of a finite dimensional cocommutative K-Hopf algebra H together with an action on L such that the R-module homomorphism

$$
\begin{aligned}
& j: L \otimes_{K} H \longrightarrow \operatorname{End}_{K}(L) \\
& \quad s \otimes h \longmapsto(t \longmapsto \operatorname{sh}(t)) \text { for } s, t \in L, h \in H
\end{aligned}
$$

is an isomorphism.

The group algebra $K[G]$ endows L / K with the classical Hopf-Galois structure.

Hopf-Galois Structures

Theorem (Greither and Pareigis)

Hopf-Galois structures on L / K correspond bijectively to regular subgroups of $\operatorname{Perm}(G)$ which are normalised by the image of G, as left translations, inside $\operatorname{Perm}(G)$.

Every K-Hopf algebra which endows L / K with a Hopf-Galois structure is of the form $L[N]^{G}$ for some regular subgroup $N \subseteq \operatorname{Perm}(G)$ normalised by the left translations.

Hopf-Galois Structures: Byott's Translation

Theorem (Byott)

Let G and N be finite groups. There exists a bijection between the sets
$\mathcal{N}=\{\alpha: N \hookrightarrow \operatorname{Perm}(G) \mid \alpha(N)$ is regular and normalised by $G\}$

$$
\mathcal{G}=\{\beta: G \hookrightarrow \operatorname{Hol}(N) \mid \beta(G) \text { is regular }\},
$$

where $\operatorname{Hol}(N)=N \rtimes \operatorname{Aut}(N)$.

Enumerating Hopf-Galois Structures (Byott)

Using Byott's translation one can show that
\sharp HGS on L / K of type $N=$
$\left.\left.\frac{|\operatorname{Aut}(G)|}{|\operatorname{Aut}(N)|} \right\rvert\,\{H \subseteq \operatorname{Hol}(N)$ regular with $H \cong G\} \right\rvert\,$.

Hopf-Galois Structures (HGS): Some Results

- Byott (1996): if $|G|=n$, then L / K has unique HGS iff $\operatorname{gcd}(n, \phi(n))=1$
- $\operatorname{Kohl}(1998,2019)$ HGS for $C_{p^{n}}, D_{n}$ for a prime $p>2$
- Byott $(1996,2004)$ HGS for $|G|=p^{2}, p q$, also when G a nonabelian simple group
- Carnahan and Childs $(1999,2005)$ HGS for C_{p}^{n}, S_{n}
- Alabadi and Byott $(2017,2019)$ HGS for $|G|$ squarefree
- Nejabati Zenouz $(2018,2019)$ HGS for $|G|=p^{3}$ where $p \geq 2$
- Crespo and Salguero (2019) HGS for $C_{p^{n}} \rtimes C_{D}$ with $p \nmid D$
- Samways (2019) HGS for C_{n} and Tsang for S_{n}
- Campedel, Caranti, Del Corso (2019) for $|G|=p^{2} q$: the cyclic Sylow p-subgroup case
- Crespo (2020) HGS for $2 p^{2}$, with $p>2$

Skew Braces Parametrise Hopf-Galois Structures

For a skew brace (B, \oplus, \odot) the group (B, \oplus) acts on (B, \odot) and we find

$$
\begin{aligned}
d:(B, \oplus) & \longrightarrow \operatorname{Perm}(B, \odot) \\
a & \longmapsto\left(d_{a}: b \longmapsto a \oplus b\right),
\end{aligned}
$$

which is a regular embedding.
$\left\{\begin{array}{c}\text { isomorphism classes } \\ \text { of } G \text {-skew braces, } \\ \text { i.e., with }(B, \odot) \cong G\end{array}\right\} \stackrel{\text { bij }}{\text { bij }}\left\{\begin{array}{c}\text { classes of Hopf-Galois structures } \\ \text { on } L / K \text { under } L\left[N_{1}\right]^{G} \sim L\left[N_{2}\right]^{G} \\ \text { if } N_{2}=\alpha N_{1} \alpha^{-1} \text { for some } \\ \alpha \in \operatorname{Aut}(G)\end{array}\right\}$
If (B, \oplus, \odot) is a skew brace of type, then we get the following Hopf-Galois structures on L / K

$$
\left\{L\left[\alpha(\operatorname{Im} d) \alpha^{-1}\right]^{(B, \odot)} \mid \alpha \in \operatorname{Aut}(B, \odot)\right\} .
$$

Automorphism Groups of Skew Braces

Automorphism Groups

In particular, if $f:(B, \oplus, \odot) \longrightarrow(B, \oplus, \odot)$ is an automorphism, then we have

$$
\begin{aligned}
& (B, \oplus) \xrightarrow{d} \operatorname{Perm}(B, \odot) \\
& \left.{ }_{2}\right|^{f} \\
& { }_{2}{ }^{C_{f}} \\
& (B, \oplus) \stackrel{d}{\longrightarrow} \operatorname{Perm}(B, \odot) ;
\end{aligned}
$$

using this observation we find

$$
\operatorname{Aut}_{\mathcal{B} r}(B, \oplus, \odot) \cong\left\{\alpha \in \operatorname{Aut}(B, \odot) \mid \alpha(\operatorname{Im} d) \alpha^{-1} \subseteq \operatorname{Im} d\right\} .
$$

Classification of HGS and SB I

Classifying Skew Braces

To find the non-isomorphic G-skew braces of type N classify elements of the set

$$
\mathcal{S}(G, N)=\{H \subseteq \operatorname{Perm}(G) \mid H \text { is regular, NLT, } H \cong N\},
$$

and extract a maximal subset whose elements are not conjugate by any element of $\operatorname{Aut}(G)$.

Hopf-Galois Structures Parametrised by Skew Braces

Denote by B_{G}^{N} the isomorphism class of a G-skew brace of type N given by (B, \oplus, \odot). Then the number of Hopf-Galois structures on L / K of type N is given by

$$
e(G, N)=\sum_{B_{G}^{N}} \frac{|\operatorname{Aut}(G)|}{\left|\operatorname{Aut}_{\mathcal{B} r}\left(B_{G}^{N}\right)\right|} .
$$

Classification of HGS and SB II

We would like to work with holomorphs instead of the permutation groups.

For a skew brace (B, \oplus, \odot) consider the action of (B, \odot) on (B, \oplus) by $(a, b) \longmapsto a \odot b$. This yeilds to a map

$$
\begin{aligned}
m:(B, \odot) & \longrightarrow \operatorname{Hol}(B, \oplus) \\
a & \longmapsto\left(m_{a}: b \longmapsto a \odot b\right)
\end{aligned}
$$

which is a regular embedding. In the above let λ be

Skew Braces and Regular Subgroups of Holomorph

Bachiller, Byott, Vendramin:

classes of regular subgroup of $\operatorname{Hol}(N)$ under $H_{1} \sim H_{2}$ if

$$
\begin{gathered}
H_{2}=\alpha H_{1} \alpha^{-1} \text { for some } \\
\alpha \in \operatorname{Aut}(N)
\end{gathered}
$$

Another Characterisation of Automorphism Group

$$
\operatorname{Aut}_{\mathcal{B} r}(B, \oplus, \odot) \cong\left\{\alpha \in \operatorname{Aut}(B, \oplus) \mid \alpha(\operatorname{Im} m) \alpha^{-1} \subseteq \operatorname{Im} m\right\}
$$

Classification of HGS and SB III

Skew braces

To find the non-isomorphic G-skew braces of type N for a fixed N, classify elements of the set

$$
\mathcal{S}^{\prime}(G, N)=\{H \subseteq \operatorname{Hol}(N) \mid H \text { is regular, } H \cong G\},
$$

and extract a maximal subset whose elements are not conjugate by any element of $\operatorname{Aut}(N)$.

Skew Braces: Some Results

- Rump (2007) cyclic braces
- Bachiller (2015) braces of order p^{3}
- Nejabati Zenouz $(2018,2019)$ skew braces of order p^{3}
- Catino, Colazzo, Stefanelli (2017, 2018) semi-braces and skew braces with non-trivial annihilator
- Dietzel (2018) braces of order $p^{2} q$
- Childs $(2018,2019)$ Correspondence and bi-skew braces
- Nasybullov (2018) two-sided skew braces
- Koch, Truman (2019) opposite braces
- Alabadi, Byott (2019) skew braces of squarefree order
- Campedel, Caranti, Del Corso (2019) skew braces of order $p^{2} q$: the cyclic Sylow p-subgroup case
- Acri, Bonatto (2019, 2020), skew braces of order $p q, p^{2} q$
- Crespo (2019), skew braces of order $2 p^{2}$

Skew Braces and Hopf-Galois Structures for p^{3}

Theorem 1 (Nejabati Zenouz, 2018)

Number of G-skew braces of type $N, \widetilde{e}(G, N)$, for $p>3$ prime

$\widetilde{e}(G, N)$	$C_{p^{3}}$	$C_{p^{2}} \times C_{p}$	C_{p}^{3}	$C_{p}^{2} \rtimes C_{p}$	$C_{p^{2}} \rtimes C_{p}$
$C_{p^{3}}$	3	-	-	-	-
$C_{p^{2}} \times C_{p}$	-	9	-	-	$4 p+1$
C_{p}^{3}	-	-	5	$2 p+1$	-
$C_{p}^{2} \rtimes C_{p}$	-	-	$2 p+1$	$2 p^{2}-p+3$	-
$C_{p^{2}} \rtimes C_{p}$	-	$4 p+1$	-	-	$4 p^{2}-3 p-1$

Corresponding Hopf-Galois structures $e(G, N)$

$e(G, N)$	$C_{p^{3}}$	$C_{p^{2}} \times C_{p}$	C_{p}^{3}	$C_{p}^{2} \rtimes C_{p}$	$C_{p^{2}} \rtimes C_{p}$
$C_{p^{3}}$	p^{2}	-	-	-	-
$C_{p^{2}} \times C_{p}$	-	$(2 p-1) p^{2}$	-	-	$(2 p-1)(p-1) p^{2}$
C_{p}^{3}	-	-	$\left(p^{4}+p^{3}-1\right) p^{2}$	$\left(p^{3}-1\right)\left(p^{2}+p-1\right) p^{2}$	-
$C_{p}^{2} \rtimes C_{p}$	-	-	$\left(p^{2}+p-1\right) p^{2}$	$\left(2 p^{3}-3 p+1\right) p^{2}$	-
$C_{p^{2}} \rtimes C_{p}$	-	$(2 p-1) p^{2}$	-	-	$(2 p-1)(p-1) p^{2}$

Skew Braces and Hopf-Galois Structures for p^{3}

Theorem 2 (Nejabati Zenouz, 2018)

Number of G-skew braces of type $N, \widetilde{e}(G, N)$, for $p=3$ prime

$\widetilde{e}(G, N)$	C_{27}	$C_{9} \times C_{3}$	C_{3}^{3}	$C_{3}^{2} \rtimes C_{3}$	$C_{9} \rtimes C_{3}$
C_{27}	3	-	-	-	-
$C_{9} \times C_{3}$	-	8	1	2	11
C_{3}^{3}	-	1	4	5	2
M_{1}	-	2	5	14	4
M_{2}	-	11	2	4	22

Corresponding Hopf-Galois structures $e(G, N)$

$e(G, N)$	C_{27}	$C_{9} \times C_{3}$	C_{3}^{3}	$C_{3}^{2} \rtimes C_{3}$	$C_{9} \rtimes C_{3}$
C_{27}	9	-	-	-	-
$C_{9} \times C_{3}$	-	39	6	12	78
C_{3}^{3}	-	624	339	1300	1248
M_{1}	-	48	51	317	96
M_{2}	-	39	6	12	78

Skew Braces and Hopf-Galois Structures for p^{3}

Theorem 3 (Nejabati Zenouz, 2018)

Number of G-skew braces of type $N, \widetilde{e}(G, N)$, for $p=2$ prime

$\widetilde{e}(G, N)$	C_{8}	$C_{4} \times C_{2}$	C_{2}^{3}	D_{8}	Q_{8}
C_{8}	2	-	-	2	2
$C_{4} \times C_{2}$	1	6	3	3	1
C_{2}^{3}	-	2	2	1	1
D_{8}	1	5	2	4	2
Q_{8}	1	1	1	2	2

Corresponding Hopf-Galois structures $e(G, N)$

$e(G, N)$	C_{8}	$C_{4} \times C_{2}$	C_{2}^{3}	D_{8}	Q_{8}
C_{8}	2	-	-	2	2
$C_{4} \times C_{2}$	4	10	4	6	2
C_{2}^{3}	-	42	8	42	14
D_{8}	2	14	6	6	2
Q_{8}	6	6	2	6	2

Skew Braces of Semi-direct Product Type

Remark

Note for $p>3$ we have $p^{2} \mid e(G, N)$, and for $p>2$

$$
|\operatorname{Aut}(N)| e(G, N)=|\operatorname{Aut}(G)| e(N, G) \text { and } \widetilde{e}(G, N)=\widetilde{e}(N, G) .
$$

Question

How general is the pattern $\widetilde{e}(G, N)=\widetilde{e}(N, G)$?

Proposition (Nejabati Zenouz, Acri and Bonatto)

Let P and Q be groups. Suppose $\alpha, \beta: Q \longrightarrow \operatorname{Aut}(P)$ are group homomorphisms such that $\operatorname{Im} \beta$ is an abelian group and $[\operatorname{Im} \alpha, \operatorname{Im} \beta]=1$.
(1) We can form an $\left(P \rtimes_{\alpha} Q\right)$-skew brace of type $P \rtimes_{\beta} Q$.
(2) And an $\left(P \rtimes_{\beta} Q^{\mathrm{op}}\right)$-skew brace of type $P \rtimes_{\alpha} Q$.
(Acri and Bonatto showed that $P \subset$ ker λ.

Skew Braces of Type $C_{p^{n}} \rtimes C_{p}$ and

Corresponding Hopf-Galois Structures

Section Contents

o

- The Yang-Baxter Equation and Skew Braces
- Hopf-Galois Structures and Skew Braces
- Automorphism Groups of Skew Braces
- Classification of Hopf-Galois Structures and Skew Braces
- Skew Braces and Hopf-Galois Structures of order p^{3}
(2) Skew Braces and Hopf-Galois Structures of Type $C_{p^{n}} \rtimes C_{p}$
- Motivation and the Group M_{ϵ}
- Automorphisms of M_{ϵ}
- The p-Sylow Subgroup of $\operatorname{Aut}\left(M_{\epsilon}\right)$
- Conjugation in $\operatorname{Aut}\left(M_{\epsilon}\right)$
- Subgroups of M_{ϵ} up to Automorphisms
- Subgroups of $A\left(M_{\epsilon}\right)$
- Regular Subgroups of Holomorph
- Regular Subgroups of $\operatorname{Hol}\left(M_{\epsilon}\right)$ and Conjugation
- Skew Braces of Type M_{ϵ}
- Each column in the tables for Skew braces and Hopf-Galois Structures of Order p^{3}, except $C_{p^{3}}$ case, is (was) new.
- Skew Braces and Hopf-Galois Structures of Heisenberg Type, J. Algebra, 2019, that is (B, \oplus) is isomorphic to

$$
M \stackrel{\text { def }}{=}\left\langle\rho, \sigma, \tau \mid \rho^{p}=\sigma^{p}=\tau^{p}=1, \sigma \rho=\rho \sigma, \tau \rho=\rho \tau, \tau \sigma=\rho \sigma \tau\right\rangle .
$$

- Note, $M \cong C_{p}^{2} \rtimes C_{p}$. Idea: I could use for $\epsilon=0,1$,

$$
M_{\epsilon} \stackrel{\text { def }}{=}\left\langle\rho, \sigma, \tau \mid \rho^{p}=\sigma^{p}=\tau^{p}=1, \sigma \rho=\rho \sigma, \tau \rho=\rho \tau, \tau \sigma=\rho^{1-\epsilon} \sigma \tau\right\rangle
$$

- Now $M_{0}=M$ and $M_{1}=C_{p}^{3}$. Then

$$
\operatorname{Aut}\left(M_{\epsilon}\right) \subseteq \mathrm{GL}_{3}\left(\mathbb{F}_{p}\right)
$$

and handle both cases at once: too late, too far...

The Group M_{ϵ}

- Implement the idea for $C_{p^{2}} \rtimes C_{p}$ for p prime, so

$$
M_{\epsilon} \stackrel{\text { def }}{=}\left\langle\sigma, \tau \mid \sigma^{p^{2}}=\tau^{p}=1, \tau \sigma=\sigma^{p^{\epsilon+1}} \sigma \tau\right\rangle
$$

- Change to $n \geq 2$ with $p>3$: groups of the form $C_{p^{n}} \rtimes C_{p}$.
- Note, a homomorphism

$$
\alpha: C_{p} \longrightarrow \operatorname{Aut}\left(C_{p^{n}}\right) \cong C_{p^{n-1}} \times C_{p-1}
$$

is either trivial, or has a unique image of order p.

- Therefore,

$$
M_{\epsilon} \stackrel{\text { def }}{=}\left\langle\sigma, \tau \mid \sigma^{p^{n}}=\tau^{p}=1, \tau \sigma=\sigma^{p^{m}} \sigma \tau\right\rangle \cong C_{p^{n}} \rtimes C_{p},
$$

where $m=n+\epsilon-1$, and $m=n$ or $m=n-1$ only.

- Nonabelian group when $\epsilon=0$ and abelian when $\epsilon=1.29 / 52$

Generalities of M_{ϵ}

- For positive integers $a_{1}, a_{2}, a_{3}, a_{4}, r$ we have

$$
\begin{aligned}
\sigma^{a_{1}} \tau^{a_{2}} \sigma^{a_{3}} \tau^{a_{4}} & =\sigma^{a_{2} a_{3} p^{m}} \sigma^{a_{1}+a_{3}} \tau^{a_{2}+a_{4}} \\
\left(\sigma^{a_{1}} \tau^{a_{2}}\right)^{r} & =\sigma^{\frac{1}{2} a_{1} a_{2} r(r-1) p^{m}} \sigma^{a_{1} r} \tau^{a_{2} r}
\end{aligned}
$$

- The commutators of two elements $u=\sigma^{u_{1}} \tau^{u_{2}}$ and $v=\sigma^{v_{1}} \tau^{v_{2}}$ is given by

$$
[u, v]=u v u^{-1} v^{-1}=\sigma^{\left(u_{1} v_{2}-v_{1} u_{2}\right) p^{m}}
$$

Automorphisms of M_{ϵ}

For $\epsilon=0,1$ let

$$
\mathrm{L}_{\epsilon}\left(\mathbb{F}_{p}\right) \stackrel{\text { def }}{=}\left\{A \in \mathrm{GL}_{2}\left(\mathbb{F}_{p}\right) \left\lvert\, A=\left(\begin{array}{cc}
a_{1} & 0 \\
a_{3} & a_{4}^{\epsilon}
\end{array}\right)\right.\right\}
$$

Lemma

Every automorphism of $\alpha \in \operatorname{Aut}\left(M_{\epsilon}\right)$ can be written as

$$
\alpha=\left[\begin{array}{cc}
a_{1} & a_{2} p^{n-1} \\
a_{3} & a_{4}^{\epsilon}
\end{array}\right], \text { with } \sigma^{\alpha}=\sigma^{a_{1}} \tau^{a_{3}}, \tau^{\alpha}=\sigma^{a_{2} p^{n-1}} \tau^{a_{4}^{\epsilon}}
$$

where $a_{1}=0, \ldots, p^{n}-1$ and $a_{2}, a_{3}, a_{4}=0, \ldots, p-1$ such that if we reduce the entries modulo p, then we have an element of $\mathrm{L}_{\epsilon}\left(\mathbb{F}_{p}\right)$. In particular, we have

$$
\left|\operatorname{Aut}\left(M_{\epsilon}\right)\right|=(p-1)^{\epsilon+1} p^{n+1}
$$

Idea of Proof

- Let $\alpha \in \operatorname{Aut}\left(M_{\epsilon}\right)$. Then we have

$$
\begin{aligned}
\sigma^{\alpha} & =\sigma^{a_{1}} \tau^{a_{3}} \\
\tau^{\alpha} & =\sigma^{a_{2}} \tau^{a_{4}}
\end{aligned}
$$

for some $a_{1}, a_{2}, a_{3}, a_{4} \in \mathbb{Z}$.

- Write $\alpha=\left[\begin{array}{ll}a_{1} & a_{2} \\ a_{3} & a_{4}\end{array}\right]$, first row matters modulo p^{n} and the second row modulo p.
- Now $\tau^{p}=1$ implies $a_{2} \equiv 0 \bmod p^{n-1}$.
- For α to be injective we need $a_{1}, a_{4} \not \equiv 0 \bmod p$.
- We need $\left(\sigma^{\alpha}\right)^{p^{m}+1} \tau^{\alpha}=\tau^{\alpha} \sigma^{\alpha}$, implies that we need $a_{1} a_{4} \equiv a_{1} \bmod p^{n-m}$.
- Thus, $a_{4}=1$ if $m=n-1$ and $a_{4}=1, \ldots, p-1$ if $m=n$.

Remark: Composition Rule for Automorphisms

Given two automorphisms

$$
\alpha=\left[\begin{array}{cc}
a_{1} & a_{2} p^{n-1} \\
a_{3} & a_{4}^{\epsilon}
\end{array}\right] \text { and } \beta=\left[\begin{array}{cc}
b_{1} & b_{2} p^{n-1} \\
b_{3} & b_{4}^{\epsilon}
\end{array}\right]
$$

then the composition $\alpha \beta$ corresponds to
$\alpha \beta=\left[\begin{array}{cc}a_{1} b_{1}+a_{2} b_{3} p^{n-1}+\frac{1}{2} a_{1} a_{3} b_{1}\left(b_{1}-1\right) p^{m} & \left(a_{1} b_{2}+a_{2} b_{4}^{\epsilon}\right) p^{n-1} \\ a_{3} b_{1}+a_{4}^{\epsilon} b_{3} & \left(a_{4} b_{4}\right)^{\epsilon}\end{array}\right]$.

Structure of $\operatorname{Aut}\left(M_{\epsilon}\right)$

Lemma

The group $\operatorname{Aut}\left(M_{\epsilon}\right)$ fits in the exact sequence

$$
1 \longrightarrow C_{p^{n-1}} \times C_{p} \longrightarrow \operatorname{Aut}\left(M_{\epsilon}\right) \longrightarrow \mathrm{L}_{\epsilon}\left(\mathbb{F}_{p}\right) \longrightarrow 1 .
$$

Idea of Proof I

- For $\alpha \in \operatorname{Aut}\left(M_{\epsilon}\right)$ we have $\alpha\left(\sigma^{p}\right)=\sigma^{a_{1} p}$.
- Then $Z \stackrel{\text { def }}{=}\left\langle\sigma^{p}\right\rangle \cong C_{p^{n-1}}$ is a characteristic subgroup of M_{ϵ}.
- Now α descends on $M_{\epsilon} / Z \cong C_{p}^{2}$, so we have a map

$$
\Psi: \operatorname{Aut}\left(M_{\epsilon}\right) \longrightarrow \mathrm{GL}_{2}\left(\mathbb{F}_{p}\right)
$$

- Note that if $\alpha \in \operatorname{ker} \Psi$, then we must have

$$
\begin{aligned}
\sigma^{\alpha} & =\sigma^{a_{1} p+1} \\
\tau^{\alpha} & =\sigma^{a_{2} p^{n-1}} \tau,
\end{aligned}
$$

- This gives
$\operatorname{ker} \Psi=\left\{\left.\left[\begin{array}{cc}a_{1} p+1 & a_{2} p^{n-1} \\ 0 & 1\end{array}\right] \right\rvert\, a_{1}=0, \ldots, p^{n-1}-1, a_{2}=0, \ldots, p-1\right\}$.

Idea of Proof II

- Take the two automorphisms

$$
\beta_{1}=\left[\begin{array}{cc}
p+1 & 0 \\
0 & 1
\end{array}\right], \beta_{2}=\left[\begin{array}{cc}
1 & p^{n-1} \\
0 & 1
\end{array}\right] \in \operatorname{ker} \Psi
$$

- Note first that $\beta_{2}^{p}=1$ and $\beta_{1} \beta_{2}=\beta_{2} \beta_{1}$.
- Use the Lemma that for $p>3$ and $p \nmid a$ we have

$$
(p+1)^{a p^{r}}=d p^{r+4}+c p^{r+3}+b p^{r+2}+a p^{r+1}+1
$$

for some integers b, c, d, which gives

$$
\beta_{1}^{p^{r}}(\sigma)=\sigma^{d p^{r+4}+c p^{r+3}+b p^{r+2}+p^{r+1}+1}
$$

- Gives that β_{1} has order p^{n-1}, so

$$
\operatorname{ker} \Psi=\left\langle\beta_{1}, \beta_{2}\right\rangle \cong C_{p^{n-1}} \times C_{p}
$$

- Follows from earlier Lemma that $\operatorname{Im} \Psi=\mathrm{L}_{\epsilon}\left(\mathbb{F}_{p}\right)$.

The p-Sylow Subgroup of $\operatorname{Aut}\left(M_{\epsilon}\right)$

Lemma

The group $\operatorname{Aut}\left(M_{\epsilon}\right)$ has a unique p-Sylow subgroup $\mathrm{A}\left(M_{\epsilon}\right)$ isomorphic to

$$
\mathrm{A}\left(M_{\epsilon}\right)=\left\langle\alpha_{1}, \alpha_{2}, \alpha_{3}\right\rangle \cong\left(C_{p^{n-1}} \times C_{p}\right) \rtimes C_{p}
$$

generated by automorphisms

$$
\alpha_{1} \stackrel{\text { def }}{=}\left[\begin{array}{cc}
p+1 & 0 \\
0 & 1
\end{array}\right], \alpha_{2} \stackrel{\text { def }}{=}\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right], \alpha_{3} \stackrel{\text { def }}{=}\left[\begin{array}{cc}
1 & p^{n-1} \\
0 & 1
\end{array}\right],
$$

which satisfy

$$
\begin{aligned}
\alpha_{1}^{p^{n-1}} & =\alpha_{2}^{p}=\alpha_{3}^{p}=1, \\
\alpha_{2} \alpha_{1}=\alpha_{1} \alpha_{2}, \alpha_{3} \alpha_{1} & =\alpha_{1} \alpha_{3}, \alpha_{3} \alpha_{2}=\alpha_{1}^{p^{n-2}} \alpha_{2} \alpha_{3} .
\end{aligned}
$$

Generalities of $\operatorname{Aut}\left(M_{\epsilon}\right)$ and $\mathrm{A}\left(M_{\epsilon}\right)$

For positive integers $a_{1}, a_{2}, a_{3}, a_{4}, r$ we have

$$
\begin{aligned}
\alpha_{1}^{a_{1}} \alpha_{2}^{a_{2}} \alpha_{3}^{a_{3}} \alpha_{1}^{b_{1}} \alpha_{2}^{b_{2}} \alpha_{3}^{b_{3}} & =\alpha_{1}^{a_{3} b_{2} p^{n-2}} \alpha_{1}^{a_{1}+b_{1}} \alpha_{2}^{a_{2}+b_{2}} \alpha_{3}^{a_{3}+b_{3}} \\
\left(\alpha_{1}^{a_{1}} \alpha_{2}^{a_{2}} \alpha_{3}^{a_{3}}\right)^{r} & =\alpha_{1}^{\frac{1}{2} a_{2} a_{3} r(r-1) p^{n-2}} \alpha_{1}^{a_{1} r} \alpha_{2}^{a_{2} r} \alpha_{3}^{a_{3} r}
\end{aligned}
$$

Lemma

Let $\alpha \in \operatorname{Aut}\left(M_{\epsilon}\right)$. Then we can always write $\alpha=\alpha_{3}^{r_{3}} \beta$, for some r_{3} and some $\beta=\left[\begin{array}{ll}b_{1} & 0 \\ b_{3} & b_{4}^{\epsilon}\end{array}\right] \in \operatorname{Aut}\left(M_{\epsilon}\right)$, and we find

$$
\alpha^{-1}=\left[\begin{array}{cc}
b_{1}^{-1}-\frac{1}{2} b_{1}^{-1}\left(b_{1}^{-1}-1\right) b_{3} p^{m} & 0 \\
-b_{1}^{-1} b_{3} b_{4}^{-\epsilon} & b_{4}^{-\epsilon}
\end{array}\right] \alpha_{3}^{-r_{3}} .
$$

In particular, we have

$$
\begin{aligned}
\alpha\left(\alpha_{1}^{a_{1}} \alpha_{2}^{a_{2}} \alpha_{3}^{a_{3}}\right) \alpha^{-1}= & \alpha_{1}^{a_{2} r_{3} b_{1}^{-1} b_{4}^{\epsilon} p^{n-2}+\frac{1}{2} a_{2}\left(b_{1}^{-1}-1\right) p^{m-1}-a_{3} b_{3} b_{4}^{\epsilon} p^{n-2}} \\
& \alpha_{1}^{a_{1}} \alpha_{2}^{a_{2} b_{1}^{-1} b_{4}^{\epsilon}} \alpha_{3}^{a_{3} b_{1} b_{4}^{-\epsilon}}
\end{aligned}
$$

Subgroups of M_{ϵ} up to Automorphisms

Lemma

The strict subgroups of M_{ϵ} are all abelian and given by the following table (say for $n>2$).

Order	Subgroups Up to Automorphisms
p	$\left\langle\sigma^{p^{n-1}}\right\rangle,\langle\tau\rangle$
p^{r}	$\left\langle\sigma^{\left.p^{n-r}\right\rangle,\left\langle\sigma^{p^{n-r}} \tau\right\rangle,\left\langle\sigma^{p^{n-r+1}}, \tau\right\rangle}\right.$
p^{n}	$\langle\sigma\rangle,\left\langle\sigma^{p}, \tau\right\rangle$
p^{n+1}	$\langle\sigma, \tau\rangle$

For $1<r<n$ and $a=1, \ldots, p-1$.

Subgroups of $A\left(M_{\epsilon}\right)$

Lemma

Assume n is large. Then subgroups of $\mathrm{A}\left(M_{\epsilon}\right)$ are of the following form

Order	Subgroups
p	$\left\langle\alpha_{1}^{a_{1} p^{n-2}} \alpha_{2}^{a_{2}} \alpha_{3}^{a_{3}}\right\rangle$
p^{2}	$\left\langle\alpha_{1}^{a_{1} p^{n-3}} \alpha_{2}^{a_{2}} \alpha_{3}^{a_{3}}\right\rangle,\left\langle\alpha_{1}^{p^{n-2}}, \alpha_{3}\right\rangle,\left\langle\alpha_{1}^{p^{n-2}}, \alpha_{2} \alpha_{3}^{a_{3}}\right\rangle$
p^{r}	$\left\langle\alpha_{1}^{a_{1} p^{n-r-1}} \alpha_{2}^{a_{2}} \alpha_{3}^{a_{3}}\right\rangle$,
	$\left\langle\alpha_{1}^{p^{n-r}}, \alpha_{3}\right\rangle,\left\langle\alpha_{1}^{p^{n-r}}, \alpha_{2} \alpha_{3}^{a_{3}}\right\rangle,\left\langle\alpha_{1}^{a_{1} p^{n-r}} \alpha_{2}, \alpha_{1}^{a_{2} p^{n-r}} \alpha_{3}\right\rangle$
	$\left\langle\alpha_{1}^{p^{n-r+1}}, \alpha_{2}, \alpha_{3}\right\rangle$

for some a_{1}, a_{2}, a_{3}, r.

Regular Subgroups of Holomorph

- The holomorph of a group N by

$$
\operatorname{Hol}(N) \stackrel{\text { def }}{=} N \rtimes \operatorname{Aut}(N)=\{\eta \alpha \mid \eta \in N, \alpha \in \operatorname{Aut}(N)\},
$$

and $\Theta: \operatorname{Hol}(N) \longrightarrow \operatorname{Aut}(N)$ natural projection.

- For $u, v \in N$ and $\alpha, \beta \in \operatorname{Aut}(N)$ write

$$
(u \alpha)(v \beta)=u v^{\alpha} \alpha \beta=u(\alpha \cdot v) \alpha \beta .
$$

- Regular subgroups H with $|\Theta(H)|=m$ are of the form

$$
H=\left\langle\eta_{1}, \ldots, \eta_{r}, v_{1} \alpha_{1}, \ldots, v_{s} \alpha_{s}\right\rangle
$$

for some $v_{1}, \ldots, v_{s} \in N$, if such elements exist.

- Let $H_{1}=\left\langle\eta_{1}, \ldots, \eta_{r}\right\rangle \subseteq N$, and $H_{2}=\left\langle\alpha_{1}, \ldots, \alpha_{s}\right\rangle \subseteq \operatorname{Aut}(N)$, where $\left|H_{1}\right|=\frac{|H|}{m}$ and $\left|H_{2}\right|=m$.

Generalities of $\operatorname{Hol}(N)$

- We need to check the "words" and "relations" of

$$
H_{2}=\left\langle\alpha_{1}, \ldots, \alpha_{s}\right\rangle
$$

- For every relation $R\left(\alpha_{1}, \ldots, \alpha_{s}\right)=1$ on H_{2}, we need

$$
R\left(v_{1} \alpha_{1}, \ldots, v_{s} \alpha_{s}\right) \in H_{1}
$$

for $|H|=|N|$.

- For every word $W\left(\alpha_{1}, \ldots, \alpha_{s}\right) \neq 1$ on H_{2}, we need

$$
W\left(v_{1} \alpha_{1}, \ldots, v_{s} \alpha_{s}\right) W\left(\alpha_{1}, \ldots, \alpha_{s}\right)^{-1} \notin H_{1}
$$

for H to act freely.

More Generalities of $\operatorname{Hol}(N)$

For example, let $r_{i}=\operatorname{Ord}\left(\alpha_{i}\right)$ and consider regular subgroup

$$
H=\left\langle\eta_{1}, \ldots, \eta_{r}, v_{1} \alpha_{1}, \ldots, v_{s} \alpha_{s}\right\rangle
$$

Then some of the conditions are of the following form

$$
\begin{aligned}
\left(v_{i} \alpha_{i}\right)^{r_{i}} & =v_{i} \alpha_{i} \cdot v_{i} \cdots \alpha_{i}^{r_{i}-1} \cdot v_{i} \alpha_{i}^{r_{i}} \\
& =v_{i} \alpha_{i} \cdot v_{i} \cdots \alpha_{i}^{r_{i}-1} \cdot v_{i} \in H_{1} \text { and } \\
\left(v_{i} \alpha_{i}\right)^{s} \alpha^{-s} & =v_{i} \alpha_{i} \cdot v_{i} \cdots \alpha_{i}^{s-1} \cdot v_{i} \notin H_{1}, \text { for } 0<s<r_{i}, \\
\left(v_{i} \alpha_{i}\right)\left(\eta_{j}\right)\left(v_{i} \alpha_{i}\right)^{-1} & =v_{i}\left(\alpha_{i} \cdot \eta_{j}\right) v_{i}^{-1} \in H_{1} \text { for all } i, j .
\end{aligned}
$$

If H and \widetilde{H} are conjugate by an element of $\beta \in \operatorname{Aut}(N)$, then $\beta\left(H_{1}\right) \subseteq \widetilde{H}_{1}$ and $\beta H_{2} \beta^{-1} \subseteq \widetilde{H}_{2}$, more precisely,

$$
\beta H \beta^{-1}=\left\langle\eta_{1}^{\beta}, \ldots, \eta_{r}^{\beta}, v_{1}^{\beta} \beta \alpha_{1} \beta^{-1}, \ldots, v_{s}^{\beta} \beta \alpha_{s} \beta^{-1}\right\rangle \subseteq \widetilde{H}
$$

so can consider subgroups of N up to automorphisms.

Regular Elements of $\operatorname{Hol}\left(M_{\epsilon}\right)$

Regular subgroups of $\operatorname{Hol}\left(M_{\epsilon}\right)$ are contained in

$$
\begin{gathered}
M_{\epsilon} \rtimes A\left(M_{e}\right)=\left\langle\sigma, \tau, \alpha_{1}, \alpha_{2}, \alpha_{3}\right\rangle \\
\alpha_{1} \stackrel{\text { def }}{=}\left[\begin{array}{cc}
p+1 & 0 \\
0 & 1
\end{array}\right], \alpha_{2} \stackrel{\text { def }}{=}\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right], \alpha_{3} \stackrel{\text { def }}{=}\left[\begin{array}{cc}
1 & p^{n-1} \\
0 & 1
\end{array}\right] .
\end{gathered}
$$

Lemma

Let $g=v \alpha_{1}^{a_{1}} \alpha_{2}^{a_{2}} \alpha_{3}^{a_{3}}$ for natural numbers a_{1}, a_{2}, a_{3}, r, and an element $v=\sigma^{v_{1}} \tau^{v_{2}} \in M_{\epsilon}$. Then we have

$$
g^{r}=\sigma^{k_{r} r p^{n-1}+v_{1} \sum_{j=1}^{r-1}(p+1)^{a_{1} j}-1} v^{r} \tau^{\frac{1}{2} r(r-1) a_{2} v_{1}}\left(\alpha_{1}^{a_{1}} \alpha_{2}^{a_{2}} \alpha_{3}^{a_{3}}\right)^{r}
$$

for some integer k_{r}. In particular,

$$
g^{p^{r}}=\sigma^{b_{r} v_{1} p^{r+1}+v_{1} p^{r}} \alpha_{1}^{a_{1} p^{r}} \text { for some integer } b_{r} .
$$

Thus if g is regular, its order "depends" on v_{1}.

Regular Subgroups of $\operatorname{Hol}\left(M_{\epsilon}\right)$

Proposition

Let $G \subset \operatorname{Hol}\left(M_{\epsilon}\right)$ be a regular subgroups different from M_{ϵ}. Let $H_{1}=G \cap M_{\epsilon}=\langle u, v\rangle$ and $H_{2}=\Theta(G) \subseteq \operatorname{Aut}\left(M_{\epsilon}\right)$. The following holds.
(1) If $\sigma \tau^{d} \in H_{1}$, for some d, then $|\Theta(G)|=p$.
(2) If $\sigma \notin H_{1}$, then $\sigma^{p^{r}} \in H_{1}$ for some $r<n$.
(3) If $\tau \in H_{1}$, then H_{2} must have one generator.
(1) The subgroup G is generated by two elements, and it cannot be outside of the forms

$$
\begin{aligned}
& \left\langle\sigma \tau^{d}, \tau^{w_{2}} \alpha_{1}^{a_{1} p^{n-2}} \alpha_{2}^{a_{2}} \alpha_{3}^{a_{3}}\right\rangle,\left\langle\tau, \sigma^{w_{1}} \alpha_{1}^{a_{1}} \alpha_{2}^{a_{2}} \alpha_{3}^{a_{3}}\right\rangle \\
& \left\langle x \alpha_{1}^{a_{1}}, y \alpha_{2}^{a_{2}} \alpha_{3}^{a_{3}}\right\rangle,\left\langle x \alpha_{1}^{a_{1}} \alpha_{2}, y \alpha_{1}^{a_{2}} \alpha_{3}\right\rangle
\end{aligned}
$$

for some $a_{1}, a_{2}, a_{3}, d, w_{1}, w_{2}$, and $x, y \in M_{\epsilon}$.

Skew Braces of Type M_{ϵ}

In order to find the non-isomorphic skew braces we need a general conjugation formula.

Theorem

Let $g=v \alpha_{1}^{a_{1}} \alpha_{2}^{a_{2}} \alpha_{3}^{a_{3}}$ for natural numbers a_{1}, a_{2}, a_{3}, r, and an element $v=\sigma^{v_{1}} \tau^{v_{2}} \in M_{\epsilon}$. Take $\alpha=\alpha_{3}^{r_{3}} \beta \in \operatorname{Aut}\left(M_{\epsilon}\right)$. Then we have

$$
\begin{aligned}
& \alpha g^{r} \alpha^{-1}=\sigma^{k_{r} r p^{n-1}+b_{1} v_{1} \sum_{j=1}^{r-1}(p+1)^{a_{1} j}-1}(\alpha \cdot v)^{r} \tau^{\frac{1}{2} r(r-1) a_{2} b_{1} v_{1}} \\
& \alpha_{1}^{a_{2} r_{3} b_{1}^{-1} b_{4}^{\epsilon} r p^{n-2}+a_{2} \frac{1}{2}\left(b_{1}^{-1}-1\right) r p^{m-1}-a_{3} b_{3} b_{4}^{\epsilon} r p^{n-2}+\frac{1}{2} a_{2} a_{3} r(r-1) p^{n-2}} \\
& \alpha_{1}^{a_{1} r} \alpha_{2}^{a_{2} b_{1}^{-1} b_{4}^{\epsilon} r} \alpha_{3}^{a_{3} b_{1} b_{4}^{-\epsilon} r}
\end{aligned}
$$

for some integer k_{r}.

Skew Braces of Type M_{ϵ} and Corresponding HGS

Now using the Proposition and Theorem in the previous two slides go through all relevant regular subgroups according to $|\Theta(G)|=p^{r}$. For each $r=1, \ldots, n$:
(1) Classify regular subgroups.
(2) Find skew braces using conjugation formula.
(3) Determine automorphism groups of skew braces.
(1) Count Hopf-Galois structures as parametrised by skew braces.

Example $|\Theta(G)|=p$

Proposition

For $|\Theta(G)|=p$ there are exactly $5 p-7 M_{0}$-skew braces of M_{0} type and $5 M_{1}$-skew braces of M_{0} type. Furthermore, we have 5 M_{0}-skew braces of M_{1} type and $3 M_{1}$-skew braces of M_{1} type. I.e., Write $\widetilde{e}(G, N, p)$, the number of skew braces with $|\Theta(G)|=p$. Then we have

$$
\begin{aligned}
& \widetilde{e}\left(M_{0}, M_{0}, p\right)=5 p-7, \\
& \widetilde{e}\left(M_{1}, M_{0}, p\right)=5, \\
& \widetilde{e}\left(M_{0}, M_{1}, p\right)=5 \\
& \widetilde{e}\left(M_{1}, M_{1}, p\right)=3
\end{aligned}
$$

Skew Braces of M_{0}-type

 automorphism groups of M_{0}-skew braces of M_{0} type$$
\begin{aligned}
\operatorname{Aut}_{\mathcal{B} r}\left(\left\langle\tau, \sigma \alpha_{1}^{p^{n-2}}\right\rangle\right) & =\left\{\left.\alpha_{3}^{r_{3}}\left[\begin{array}{ll}
b_{1} & 0 \\
b_{3} & 1
\end{array}\right] \in \operatorname{Aut}\left(M_{0}\right) \right\rvert\, b_{1} \equiv 1 \quad \bmod p\right\} \\
\operatorname{Aut}_{\mathcal{B} r}\left(\left\langle\tau, \sigma \alpha_{3}^{a_{3}}\right\rangle\right) & =\left\{\left.\alpha_{3}^{r_{3}}\left[\begin{array}{ll}
b_{1} & 0 \\
b_{3} & 1
\end{array}\right] \in \operatorname{Aut}\left(M_{0}\right) \right\rvert\, b_{3}=0\right\} \text { for } a_{3} \neq 0,1 \\
\operatorname{Aut}_{\mathcal{B} r}\left(\left\langle\tau, \sigma \alpha_{2}^{t} \alpha_{3}^{a_{3}}\right\rangle\right) & =\left\{\left.\alpha_{3}^{\widetilde{r}}\left[\begin{array}{ll}
b_{1} & 0 \\
b_{3} & 1
\end{array}\right] \in \operatorname{Aut}\left(M_{0}\right) \right\rvert\, b_{1} \equiv \pm 1 \bmod p\right\} \text { for } a_{3} \neq 1, t=1, \delta \\
\operatorname{Aut}_{\mathcal{B} r}\left(\left\langle\sigma, \tau \alpha_{1}^{a_{1} p^{n-2}}\right\rangle\right) & =\left\{\left.\alpha_{3}^{r_{3}}\left[\begin{array}{ll}
b_{1} & 0 \\
b_{3} & 1
\end{array}\right] \in \operatorname{Aut}\left(M_{0}\right) \right\rvert\, b_{3}=0\right\} \text { for } a_{1} \neq-1,0 \\
\operatorname{Aut}_{\mathcal{B} r}\left(\left\langle\sigma, \tau \alpha_{1}^{a_{1} p^{n-2}} \alpha_{3}\right\rangle\right) & =\left\{\left.\alpha_{3}^{r_{3}}\left[\begin{array}{ll}
b_{1} & 0 \\
b_{3} & 1
\end{array}\right] \in \operatorname{Aut}\left(M_{0}\right) \right\rvert\, b_{3}=0, b_{1}=1 \quad \bmod p\right\} \text { for } a_{1} \neq-1
\end{aligned}
$$

automorphism groups M_{1}-skew braces of M_{0} type

$$
\begin{aligned}
\operatorname{Aut}_{\mathcal{B} r}\left(\left\langle\tau, \sigma \alpha_{3}\right\rangle\right) & =\left\{\left.\alpha_{3}^{r_{3}}\left[\begin{array}{ll}
b_{1} & 0 \\
b_{3} & 1
\end{array}\right] \in \operatorname{Aut}\left(M_{0}\right) \right\rvert\, b_{3}=0\right\} \\
\operatorname{Aut}_{\mathcal{B} r}\left(\left\langle\tau, \sigma \alpha_{2}^{t} \alpha_{3}\right\rangle\right) & =\left\{\left.\alpha_{3}^{\widetilde{r}}\left[\begin{array}{ll}
b_{1} & 0 \\
b_{3} & 1
\end{array}\right] \in \operatorname{Aut}\left(M_{0}\right) \right\rvert\, b_{1} \equiv \pm 1 \quad \bmod p\right\} \text { for } t=1, \delta \\
\operatorname{Aut}_{\mathcal{B} r}\left(\left\langle\sigma, \tau \alpha_{1}^{-p^{n-2}}\right\rangle\right) & =\left\{\left.\alpha_{3}^{r_{3}}\left[\begin{array}{ll}
b_{1} & 0 \\
b_{3} & 1
\end{array}\right] \in \operatorname{Aut}\left(M_{0}\right) \right\rvert\, b_{3}=0\right\} \\
\operatorname{Aut}_{\mathcal{B} r}\left(\left\langle\sigma, \tau \alpha_{1}^{-p^{n-2}} \alpha_{3}\right\rangle\right) & =\left\{\left.\alpha_{3}^{r_{3}}\left[\begin{array}{ll}
b_{1} & 0 \\
b_{3} & 1
\end{array}\right] \in \operatorname{Aut}\left(M_{0}\right) \right\rvert\, b_{3}=0, b_{1} \equiv 1 \quad \bmod p\right\}
\end{aligned}
$$

Skew Braces of M_{1}-type

automorphism groups of M_{0}-skew braces of M_{1} type

$$
\operatorname{Aut}_{\mathcal{B}_{r}}\left(\left\langle\tau, \sigma \alpha_{3}\right\rangle\right)=\left\{\left.\alpha_{3}^{r_{3}}\left[\begin{array}{ll}
b_{1} & 0 \\
b_{3} & b_{4}
\end{array}\right] \in \operatorname{Aut}\left(M_{1}\right) \right\rvert\, b_{3}=0, b_{4}=1\right\}
$$

$$
\operatorname{Aut}_{\mathcal{B} r}\left(\left\langle\tau, \sigma \alpha_{2}^{t} \alpha_{3}\right\rangle\right)=\left\{\left.\alpha_{3}^{\tilde{r}}\left[\begin{array}{ll}
b_{1} & 0 \\
b_{3} & b_{4}
\end{array}\right] \in \operatorname{Aut}\left(M_{1}\right) \right\rvert\, b_{1}^{2}=b_{4} \equiv 1 \quad \bmod p\right\} \text { for } t=1, \delta
$$

$$
\operatorname{Aut}_{\mathcal{B} r}\left(\left\langle\sigma, \tau \alpha_{1}^{p^{n-2}}\right\rangle\right)=\left\{\left.\alpha_{3}^{r_{3}}\left[\begin{array}{ll}
b_{1} & 0 \\
b_{3} & b_{4}
\end{array}\right] \in \operatorname{Aut}\left(M_{1}\right) \right\rvert\, b_{3}=0, b_{4}=1\right\}
$$

$\operatorname{Aut}_{\mathcal{B}_{r}}\left(\left\langle\sigma, \tau \alpha_{1}^{p^{n-2}} \alpha_{3}\right\rangle\right)=\left\{\left.\alpha_{3}^{r_{3}}\left[\begin{array}{ll}b_{1} & 0 \\ b_{3} & b_{4}\end{array}\right] \in \operatorname{Aut}\left(M_{1}\right) \right\rvert\, b_{3}=0, b_{1}=b_{4} \equiv 1 \quad \bmod p\right\}$ automorphism groups of M_{1}-skew braces of M_{1} type

$$
\left.\left.\begin{array}{rl}
\operatorname{Aut}_{\mathcal{B} r}\left(\left\langle\tau, \sigma \alpha_{1}^{p^{n-2}}\right\rangle\right) & =\left\{\left.\alpha_{3}^{r_{3}}\left[\begin{array}{ll}
b_{1} & 0 \\
b_{3} & b_{4}
\end{array}\right] \in \operatorname{Aut}\left(M_{1}\right) \right\rvert\, b_{1} \equiv 1\right. \\
\bmod p
\end{array}\right\} \begin{array}{rl}
\operatorname{Aut}_{\mathcal{B} r}\left(\left\langle\tau, \sigma \alpha_{2}\right\rangle\right) & =\left\{\left.\alpha_{3}^{\tilde{r}}\left[\begin{array}{ll}
b_{1} & 0 \\
b_{3} & b_{4}
\end{array}\right] \in \operatorname{Aut}\left(M_{1}\right) \right\rvert\, b_{1}^{2}=b_{4}\right. \\
\bmod p
\end{array}\right\}, \begin{array}{lll}
\operatorname{Aut}_{\mathcal{B} r}\left(\left\langle\sigma, \tau \alpha_{3}\right\rangle\right) & =\left\{\left.\alpha_{3}^{r_{3}}\left[\begin{array}{ll}
b_{1} & 0 \\
b_{3} & b_{4}
\end{array}\right] \in \operatorname{Aut}\left(M_{1}\right) \right\rvert\, b_{3}=0, b_{1} \equiv b_{4}^{2}\right. & \bmod p\}
\end{array}
$$

for some known \widetilde{r}.

Corresponding Hopf-Galois Structures

Theorem

Write e (G, N, p), the number of Hopf-Galois structures with $|\Theta(G)|=p$. Then we have

$$
\begin{aligned}
& e\left(M_{0}, M_{0}, p\right)=2 p^{3}-2 p^{2}-p-1, \\
& e\left(M_{1}, M_{0}, p\right)=2(p-1) p^{2}, \\
& e\left(M_{0}, M_{1}, p\right)=2 p^{2}, \\
& e\left(M_{1}, M_{1}, p\right)=(2 p+1)(p-1) .
\end{aligned}
$$

Proof.

Follows by using

$$
e(G, N, p)=\sum_{B_{G, p}^{N}} \frac{|\operatorname{Aut}(G)|}{\left|\operatorname{Aut}_{\mathcal{B} r}\left(B_{G, p}^{N}\right)\right|}
$$

and $\left|\operatorname{Aut}\left(M_{\epsilon}\right)\right|=(p-1)^{\epsilon+1} p^{n+1}$.

Concluding Remarks

- The case for $r=2, \ldots, n$ are work in progress...
- The main ingredient for calculations is encapsulated by the conjugation formula for $\alpha g^{r} \alpha^{-1}$.
- Remains to check that if $M_{\epsilon} \hookrightarrow \operatorname{Hol}(G)$ is a regular embedding, for some G, then $G \cong M_{0}$ or M_{1} ?
- In the above setting G must have at least two generators.
- Ideas can extend to a larger project on metacyclic p-groups.

Thank you for your attention!

[^0]: ${ }^{1}$ Email: K.NejabatiZenouz@gre.ac.uk website: www.nejabatiz.com

