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Overview

First Part: brief preliminaries, notations, literature on

Yang-Baxter Equation

Skew Braces

Hopf-Galois Structures and
Connections

Second Part: results of work in progress on

Skew Braces and Hopf-Galois Structures of Type

Mε
def
= Cpn o Cp

Aut(Mε) Subgroups of Mε and Aut(Mε) Hol(Mε)
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The Yang-Baxter Equation

For a vector space V , an element

R ∈ GL(V ⊗ V )

is said to satisfy the Yang-Baxter equation (YBE) if

(R⊗ I)(I ⊗R)(R⊗ I) = (I ⊗R)(R⊗ I)(I ⊗R)

holds.

This equation can be depicted by

=
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Set-Theoretic Yang-Baxter Equation

In 1992 Drinfeld suggested studying the simplest class of
solutions arising from the set-theoretic version of this
equation.

Definition

Let X be a nonempty set and

r : X ×X −→ X ×X
(x, y) 7−→ (fx(y), gy(x))

a bijection. Then (X, r) is a set-theoretic solution of YBE if

(r × id)(id× r)(r × id) = (id× r)(r × id)(id× r)

holds. The solution (X, r) is called non-degenerate if
fx, gx ∈ Perm(X) for all x ∈ X and involutive if r2 = id.
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Skew Braces

Definition

A (left) skew brace is a triple (B,⊕,�) which consists of a set
B together with two operations ⊕ and � so that (B,⊕) and
(B,�) are groups such that for all a, b, c ∈ B:

a� (b⊕ c) = (a� b)	 a⊕ (a� c),

where 	a is the inverse of a with respect to the operation ⊕.

Remark

A skew brace is called two-sided if

(b⊕ c)� a = (b� a)	 a⊕ (c� a),

and a bi-skew brace if

a⊕ (b� c) = (a⊕ b)� a−1 � (a⊕ c).
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Skew Braces

Example

Any group (B,⊕) with

a� b = a⊕ b (similarly with a� b = b⊕ a)

is a skew brace. This is the trivial skew brace structure.

Notation

We call a skew brace (B,⊕,�) such that (B,⊕) ∼= N and
(B,�) ∼= G a G-skew brace of type N .

A skew brace (B,⊕,�) is called a brace if (B,⊕) is
abelian, i.e., a skew brace of abelian type.

Braces were introduced by Rump in 2007 as a generalisation
of radical rings. They provide non-degenerate, involutive
set-theoretic solutions of the YBE.
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Skew Braces: History

Skew braces generalise
braces and were introduced
by Guarnieri and
Vendramin in 2017.

They provide
non-degenerate
set-theoretic solutions
of the Yang-Baxter
equation.

Their connection to ring
theory and Hopf-Galois
structures was studied by
Bachiller, Byott,
Smoktunowicz, and
Vendramin.
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Skew Braces and the YBE

Theorem (Guarnieri and Vendramin)

Let (B,⊕,�) be a skew brace. Then the map

rB : B ×B −→ B ×B
(a, b) 7−→

(
	a⊕ (a� b), (	a⊕ (a� b))−1 � a� b

)
is a non-degenerate set-theoretic solution of the YBE, which is
involutive if and only if (B,⊕,�) is a brace.
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Hopf-Galois Structures

For L/K extension of fields with G = Gal(L/K), Hopf-Galois
structures are K-Hopf algebras together with an action on L.

Definition

A Hopf-Galois structure on L/K consists of a finite
dimensional cocommutative K-Hopf algebra H together with an
action on L such that the R-module homomorphism

j :L⊗K H −→ EndK (L)

s⊗ h 7−→ (t 7−→ sh (t)) for s, t ∈ L, h ∈ H

is an isomorphism.

The group algebra K[G] endows L/K with the classical
Hopf-Galois structure.
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Hopf-Galois Structures

Theorem (Greither and Pareigis)

Hopf-Galois structures on L/K correspond bijectively to regular
subgroups of Perm(G) which are normalised by the image of G,
as left translations, inside Perm(G).

Every K-Hopf algebra which endows L/K with a Hopf-Galois
structure is of the form L[N ]G for some regular subgroup
N ⊆ Perm(G) normalised by the left translations.
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Hopf-Galois Structures: Byott’s Translation

Theorem (Byott)

Let G and N be finite groups. There exists a bijection between
the sets

N = {α : N ↪→ Perm(G) | α(N) is regular and normalised by G}

G = {β : G ↪→ Hol(N) | β(G) is regular},

where Hol(N) = N o Aut(N).

Enumerating Hopf-Galois Structures (Byott)

Using Byott’s translation one can show that

]HGS on L/Kof type N =

|Aut (G)|
|Aut (N)|

|{H ⊆ Hol(N) regular with H ∼= G}| .
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Hopf-Galois Structures (HGS): Some Results

� Byott (1996): if |G| = n, then L/K has unique HGS iff
gcd (n, φ (n)) = 1

� Kohl (1998, 2019) HGS for Cpn , Dn for a prime p > 2

� Byott (1996, 2004) HGS for |G| = p2, pq, also when G a
nonabelian simple group

� Carnahan and Childs (1999, 2005) HGS for Cn
p , Sn

� Alabadi and Byott (2017, 2019) HGS for |G| squarefree

� Nejabati Zenouz (2018, 2019) HGS for |G| = p3 where p ≥ 2

� Crespo and Salguero (2019) HGS for Cpn o CD with p - D
� Samways (2019) HGS for Cn and Tsang for Sn

� Campedel, Caranti, Del Corso (2019) for |G| = p2q: the
cyclic Sylow p-subgroup case

� Crespo (2020) HGS for 2p2, with p > 2
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Skew Braces Parametrise Hopf-Galois Structures

For a skew brace (B,⊕,�) the group (B,⊕) acts on (B,�) and
we find

d : (B,⊕) −→ Perm (B,�)

a 7−→ (da : b 7−→ a⊕ b) ,

which is a regular embedding.


isomorphism classes
of G-skew braces,

i.e., with (B,�) ∼= G

 bij
!


classes of Hopf-Galois structures
on L/K under L[N1]

G ∼ L[N2]
G

if N2 = αN1α
−1 for some

α ∈ Aut(G)


If (B,⊕,�) is a skew brace of type, then we get the following
Hopf-Galois structures on L/K{

L[α (Im d)α−1](B,�) | α ∈ Aut (B,�)
}
.
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Automorphism Groups of Skew Braces

Automorphism Groups

In particular, if f : (B,⊕,�) −→ (B,⊕,�) is an automorphism,
then we have

(B,⊕) Perm (B,�)

(B,⊕) Perm (B,�) ;

d

fo Cfo

d

using this observation we find

AutBr (B,⊕,�) ∼=
{
α ∈ Aut (B,�) | α (Im d)α−1 ⊆ Im d

}
.
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Classification of HGS and SB I

Classifying Skew Braces

To find the non-isomorphic G-skew braces of type N classify
elements of the set

S(G,N) = {H ⊆ Perm (G) | H is regular, NLT, H ∼= N},

and extract a maximal subset whose elements are not conjugate
by any element of Aut (G).

Hopf-Galois Structures Parametrised by Skew Braces

Denote by BN
G the isomorphism class of a G-skew brace of type

N given by (B,⊕,�). Then the number of Hopf-Galois
structures on L/K of type N is given by

e(G,N) =
∑
BNG

|Aut (G)|
|AutBr (BN

G )|
.
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Classification of HGS and SB II

We would like to work with holomorphs instead of the
permutation groups.

For a skew brace (B,⊕,�) consider the action of (B,�) on
(B,⊕) by (a, b) 7−→ a� b. This yeilds to a map

m : (B,�) −→ Hol (B,⊕)

a 7−→ (ma : b 7−→ a� b)

which is a regular embedding. In the above let λ be

(B,�) Hol (B,⊕)

Aut (B,⊕) .

m

λ
Θ
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Skew Braces and Regular Subgroups of

Holomorph

Bachiller, Byott, Vendramin:


isomorphism classes

of skew braces of
type N , i.e., with

(B,⊕) ∼= N

 bij
!


classes of regular subgroup of

Hol(N) under H1 ∼ H2 if
H2 = αH1α

−1 for some
α ∈ Aut(N)


Another Characterisation of Automorphism Group

AutBr (B,⊕,�) ∼=
{
α ∈ Aut (B,⊕) | α (Imm)α−1 ⊆ Imm

}
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Classification of HGS and SB III

Skew braces

To find the non-isomorphic G-skew braces of type N for a fixed
N , classify elements of the set

S ′(G,N) = {H ⊆ Hol (N) | H is regular, H ∼= G},

and extract a maximal subset whose elements are not conjugate
by any element of Aut (N).
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Skew Braces: Some Results

� Rump (2007) cyclic braces

� Bachiller (2015) braces of order p3

� Nejabati Zenouz (2018, 2019) skew braces of order p3

� Catino, Colazzo, Stefanelli (2017, 2018) semi-braces and
skew braces with non-trivial annihilator

� Dietzel (2018) braces of order p2q

� Childs (2018, 2019) Correspondence and bi-skew braces

� Nasybullov (2018) two-sided skew braces

� Koch, Truman (2019) opposite braces

� Alabadi, Byott (2019) skew braces of squarefree order

� Campedel, Caranti, Del Corso (2019) skew braces of order
p2q: the cyclic Sylow p-subgroup case

� Acri, Bonatto (2019, 2020), skew braces of order pq, p2q

� Crespo (2019), skew braces of order 2p2
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Skew Braces and Hopf-Galois Structures for p3

Theorem 1 (Nejabati Zenouz, 2018)

Number of G-skew braces of type N , ẽ(G,N), for p > 3 prime

ẽ(G,N) Cp3 Cp2 × Cp C3
p C2

p o Cp Cp2 o Cp

Cp3 3 - - - -

Cp2 × Cp - 9 - - 4p+ 1

C3
p - - 5 2p+ 1 -

C2
p o Cp - - 2p+ 1 2p2 − p+ 3 -

Cp2 o Cp - 4p+ 1 - - 4p2 − 3p− 1

Corresponding Hopf-Galois structures e(G,N)

e(G,N) C
p3

C
p2
× Cp C3

p C2
p o Cp C

p2
o Cp

C
p3

p2 - - - -

C
p2
× Cp - (2p− 1)p2 - - (2p− 1)(p− 1)p2

C3
p - - (p4 + p3 − 1)p2 (p3 − 1)(p2 + p− 1)p2 -

C2
p o Cp - - (p2 + p− 1)p2 (2p3 − 3p + 1)p2 -

C
p2

o Cp - (2p− 1)p2 - - (2p− 1)(p− 1)p2
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Skew Braces and Hopf-Galois Structures for p3

Theorem 2 (Nejabati Zenouz, 2018)

Number of G-skew braces of type N , ẽ(G,N), for p = 3 prime

ẽ(G,N) C27 C9 × C3 C3
3 C2

3 o C3 C9 o C3

C27 3 - - - -
C9 × C3 - 8 1 2 11
C3

3 - 1 4 5 2
M1 - 2 5 14 4
M2 - 11 2 4 22

Corresponding Hopf-Galois structures e(G,N)

e(G,N) C27 C9 × C3 C3
3 C2

3 o C3 C9 o C3

C27 9 - - - -
C9 × C3 - 39 6 12 78
C3

3 - 624 339 1300 1248
M1 - 48 51 317 96
M2 - 39 6 12 78
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Skew Braces and Hopf-Galois Structures for p3

Theorem 3 (Nejabati Zenouz, 2018)

Number of G-skew braces of type N , ẽ(G,N), for p = 2 prime

ẽ(G,N) C8 C4 × C2 C3
2 D8 Q8

C8 2 - - 2 2
C4 × C2 1 6 3 3 1
C3

2 - 2 2 1 1
D8 1 5 2 4 2
Q8 1 1 1 2 2

Corresponding Hopf-Galois structures e(G,N)

e(G,N) C8 C4 × C2 C3
2 D8 Q8

C8 2 - - 2 2
C4 × C2 4 10 4 6 2
C3

2 - 42 8 42 14
D8 2 14 6 6 2
Q8 6 6 2 6 2
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Skew Braces of Semi-direct Product Type

Remark

Note for p > 3 we have p2 | e(G,N), and for p > 2

|Aut(N)| e(G,N) = |Aut(G)| e(N,G) and ẽ(G,N) = ẽ(N,G).

Question

How general is the pattern ẽ(G,N) = ẽ(N,G)?

Proposition (Nejabati Zenouz, Acri and Bonatto)

Let P and Q be groups. Suppose α, β : Q −→ Aut(P ) are group
homomorphisms such that Im β is an abelian group and
[Imα, Im β] = 1.

1 We can form an (P oα Q)-skew brace of type P oβ Q.

2 And an (P oβ Q
op)-skew brace of type P oα Q.

3 Acri and Bonatto showed that P ⊂ kerλ.



Skew Braces of Type Cpn o Cp
and

Corresponding Hopf-Galois Structures

26/52



27/52

Section Contents

1 Introduction
The Yang-Baxter Equation and Skew Braces
Hopf-Galois Structures and Skew Braces
Automorphism Groups of Skew Braces
Classification of Hopf-Galois Structures and Skew Braces
Skew Braces and Hopf-Galois Structures of order p3

2 Skew Braces and Hopf-Galois Structures of Type Cpn o Cp
Motivation and the Group Mε

Automorphisms of Mε

The p-Sylow Subgroup of Aut(Mε)
Conjugation in Aut(Mε)
Subgroups of Mε up to Automorphisms
Subgroups of A(Mε)
Regular Subgroups of Holomorph
Regular Subgroups of Hol(Mε) and Conjugation
Skew Braces of Type Mε



28/52

Motivation

Each column in the tables for Skew braces and Hopf-Galois
Structures of Order p3, except Cp3 case, is (was) new.

Skew Braces and Hopf-Galois Structures of Heisenberg
Type, J. Algebra, 2019, that is (B,⊕) is isomorphic to

M
def
= 〈ρ, σ, τ | ρp = σp = τp = 1, σρ = ρσ, τρ = ρτ, τσ = ρστ〉 .

Note, M ∼= C2
p o Cp. Idea: I could use for ε = 0, 1,

Mε
def
=
〈
ρ, σ, τ | ρp = σp = τp = 1, σρ = ρσ, τρ = ρτ, τσ = ρ1−εστ

〉
.

Now M0 = M and M1 = C3
p . Then

Aut(Mε) ⊆ GL3(Fp),

and handle both cases at once: too late, too far...
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The Group Mε

Implement the idea for Cp2 o Cp for p prime, so

Mε
def
=
〈
σ, τ | σp2 = τ p = 1, τσ = σp

ε+1

στ
〉
.

Change to n ≥ 2 with p > 3: groups of the form Cpn o Cp.

Note, a homomorphism

α : Cp −→ Aut(Cpn) ∼= Cpn−1 × Cp−1

is either trivial, or has a unique image of order p.

Therefore,

Mε
def
=
〈
σ, τ | σpn = τ p = 1, τσ = σp

m

στ
〉 ∼= Cpn o Cp,

where m = n+ ε− 1, and m = n or m = n− 1 only.

Nonabelian group when ε = 0 and abelian when ε = 1.
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Generalities of Mε

For positive integers a1, a2, a3, a4, r we have

σa1τa2σa3τa4 = σa2a3p
m

σa1+a3τa2+a4 ,

(σa1τa2)r = σ
1
2
a1a2r(r−1)pmσa1rτa2r.

The commutators of two elements u = σu1τu2 and
v = σv1τ v2 is given by

[u, v] = uvu−1v−1 = σ(u1v2−v1u2)pm .
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Automorphisms of Mε

For ε = 0, 1 let

Lε(Fp)
def
=

{
A ∈ GL2(Fp) | A =

(
a1 0
a3 aε4

)}
.

Lemma

Every automorphism of α ∈ Aut(Mε) can be written as

α =

[
a1 a2p

n−1

a3 aε4

]
, with σα = σa1τa3 , τα = σa2p

n−1

τa
ε
4 ,

where a1 = 0, ..., pn − 1 and a2, a3, a4 = 0, ..., p− 1 such that if
we reduce the entries modulo p, then we have an element of
Lε(Fp). In particular, we have

|Aut(Mε)| = (p− 1)ε+1pn+1.
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Idea of Proof

Let α ∈ Aut(Mε). Then we have

σα = σa1τa3

τα = σa2τa4

for some a1, a2, a3, a4 ∈ Z.

Write α =

[
a1 a2
a3 a4

]
, first row matters modulo pn and the

second row modulo p.

Now τ p = 1 implies a2 ≡ 0 mod pn−1.

For α to be injective we need a1, a4 6≡ 0 mod p.

We need (σα)p
m+1 τα = τασα, implies that we need

a1a4 ≡ a1 mod pn−m.

Thus, a4 = 1 if m = n− 1 and a4 = 1, ..., p− 1 if m = n.
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Remark: Composition Rule for Automorphisms

Given two automorphisms

α =

[
a1 a2p

n−1

a3 aε4

]
and β =

[
b1 b2p

n−1

b3 bε4

]
,

then the composition αβ corresponds to

αβ =

[
a1b1 + a2b3p

n−1 + 1
2
a1a3b1 (b1 − 1) pm (a1b2 + a2b

ε
4) p

n−1

a3b1 + aε4b3 (a4b4)
ε

]
.
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Structure of Aut(Mε)

Lemma

The group Aut(Mε) fits in the exact sequence

1 −→ Cpn−1 × Cp −→ Aut(Mε) −→ Lε(Fp) −→ 1.
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Idea of Proof I

For α ∈ Aut(Mε) we have α(σp) = σa1p.

Then Z
def
= 〈σp〉 ∼= Cpn−1 is a characteristic subgroup of Mε.

Now α descends on Mε/Z ∼= C2
p , so we have a map

Ψ : Aut(Mε) −→ GL2(Fp).

Note that if α ∈ kerΨ , then we must have

σα = σa1p+1

τα = σa2p
n−1

τ,

This gives

kerΨ =

{[
a1p+ 1 a2p

n−1

0 1

]
| a1 = 0, ..., pn−1 − 1, a2 = 0, ..., p− 1

}
.
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Idea of Proof II

Take the two automorphisms

β1 =

[
p+ 1 0

0 1

]
, β2 =

[
1 pn−1

0 1

]
∈ kerΨ.

Note first that βp2 = 1 and β1β2 = β2β1.

Use the Lemma that for p > 3 and p - a we have

(p+ 1)ap
r

= dpr+4 + cpr+3 + bpr+2 + apr+1 + 1,

for some integers b, c, d, which gives

βp
r

1 (σ) = σdp
r+4+cpr+3+bpr+2+pr+1+1,

Gives that β1 has order pn−1, so

kerΨ = 〈β1, β2〉 ∼= Cpn−1 × Cp.

Follows from earlier Lemma that ImΨ = Lε(Fp).
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The p-Sylow Subgroup of Aut(Mε)

Lemma

The group Aut(Mε) has a unique p-Sylow subgroup A(Mε)
isomorphic to

A(Mε) = 〈α1, α2, α3〉 ∼= (Cpn−1 × Cp) o Cp

generated by automorphisms

α1
def
=

[
p+ 1 0

0 1

]
, α2

def
=

[
1 0
1 1

]
, α3

def
=

[
1 pn−1

0 1

]
,

which satisfy

αp
n−1

1 = αp2 = αp3 = 1,

α2α1 = α1α2, α3α1 = α1α3, α3α2 = αp
n−2

1 α2α3.
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Generalities of Aut(Mε) and A(Mε)

For positive integers a1, a2, a3, a4, r we have

αa11 α
a2
2 α

a3
3 α

b1
1 α

b2
2 α

b3
3 = αa3b2p

n−2

1 αa1+b11 αa2+b22 αa3+b33 ,

(αa11 α
a2
2 α

a3
3 )r = α

1
2
a2a3r(r−1)pn−2

1 αa1r1 αa2r2 αa3r3 .

Lemma

Let α ∈ Aut(Mε). Then we can always write α = αr33 β, for some

r3 and some β =
[
b1 0
b3 bε4

]
∈ Aut(Mε), and we find

α−1 =

[
b−1
1 − 1

2b
−1
1

(
b−1
1 − 1

)
b3p

m 0
−b−1

1 b3b
−ε
4 b−ε4

]
α−r3
3 .

In particular, we have

α (αa11 α
a2
2 α

a3
3 )α−1 =α

a2r3b
−1
1 bε4p

n−2+ 1
2
a2(b−1

1 −1)pm−1−a3b3bε4pn−2

1

αa11 α
a2b
−1
1 bε4

2 α
a3b1b

−ε
4

3 .
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Subgroups of Mε up to Automorphisms

Lemma

The strict subgroups of Mε are all abelian and given by the
following table (say for n > 2).

Order Subgroups Up to Automorphisms

p
〈
σp

n−1
〉
, 〈τ〉

pr
〈
σp

n−r
〉
,
〈
σp

n−r

τ
〉
,
〈
σp

n−r+1

, τ
〉

pn 〈σ〉 , 〈σp, τ〉
pn+1 〈σ, τ〉

For 1 < r < n and a = 1, ..., p− 1.
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Subgroups of A(Mε)

Lemma

Assume n is large. Then subgroups of A(Mε) are of the
following form

Order Subgroups

p
〈
αa1p

n−2

1 αa22 α
a3
3

〉
p2

〈
αa1p

n−3

1 αa22 α
a3
3

〉
,
〈
αp

n−2

1 , α3

〉
,
〈
αp

n−2

1 , α2α
a3
3

〉
pr

〈
αa1p

n−r−1

1 αa22 α
a3
3

〉
,〈

αp
n−r

1 , α3

〉
,
〈
αp

n−r

1 , α2α
a3
3

〉
,
〈
αa1p

n−r

1 α2, α
a2p

n−r

1 α3

〉〈
αp

n−r+1

1 , α2, α3

〉
for some a1, a2, a3, r.
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Regular Subgroups of Holomorph

The holomorph of a group N by

Hol(N)
def
= N o Aut(N) = {ηα | η ∈ N, α ∈ Aut(N)} ,

and Θ : Hol(N) −→ Aut(N) natural projection.

For u, v ∈ N and α, β ∈ Aut(N) write

(uα) (vβ) = uvααβ = u(α · v)αβ.

Regular subgroups H with |Θ(H)| = m are of the form

H = 〈η1, ..., ηr, v1α1, ..., vsαs〉 ,

for some v1, ..., vs ∈ N , if such elements exist.

Let H1 = 〈η1, ..., ηr〉 ⊆ N, and H2 = 〈α1, ..., αs〉 ⊆ Aut(N),

where |H1| = |H|
m

and |H2| = m.
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Generalities of Hol(N)

We need to check the ”words” and ”relations” of

H2 = 〈α1, ..., αs〉 .

For every relation R(α1, ..., αs) = 1 on H2, we need

R(v1α1, ..., vsαs) ∈ H1

for |H| = |N |.
For every word W (α1, ..., αs) 6= 1 on H2, we need

W (v1α1, ..., vsαs)W (α1, ..., αs)
−1 /∈ H1

for H to act freely.
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More Generalities of Hol(N)

For example, let ri = Ord(αi) and consider regular subgroup

H = 〈η1, ..., ηr, v1α1, ..., vsαs〉 .

Then some of the conditions are of the following form

(viαi)
ri = viαi · vi · · ·αri−1i · viαrii

= viαi · vi · · ·αri−1i · vi ∈ H1 and

(viαi)
s α−s = viαi · vi · · ·αs−1i · vi /∈ H1, for 0 < s < ri,

(viαi) (ηj) (viαi)
−1 = vi (αi · ηj) v−1i ∈ H1 for all i, j.

If H and H̃ are conjugate by an element of β ∈ Aut(N), then

β(H1) ⊆ H̃1 and βH2β
−1 ⊆ H̃2, more precisely,

βHβ−1 =
〈
ηβ1 , ..., η

β
r , v

β
1βα1β

−1, ..., vβs βαsβ
−1
〉
⊆ H̃,

so can consider subgroups of N up to automorphisms.
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Regular Elements of Hol(Mε)

Regular subgroups of Hol(Mε) are contained in

Mε o A(Me) = 〈σ, τ, α1, α2, α3〉

α1
def
=

[
p+ 1 0

0 1

]
, α2

def
=

[
1 0
1 1

]
, α3

def
=

[
1 pn−1

0 1

]
.

Lemma

Let g = vαa11 α
a2
2 α

a3
3 for natural numbers a1, a2, a3, r, and an

element v = σv1τ v2 ∈Mε. Then we have

gr = σkrrp
n−1+v1

∑r−1
j=1(p+1)a1j−1vrτ

1
2
r(r−1)a2v1 (αa11 α

a2
2 α

a3
3 )r

for some integer kr. In particular,

gp
r

= σbrv1p
r+1+v1prαa1p

r

1 for some integer br.

Thus if g is regular, its order ”depends” on v1.
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Regular Subgroups of Hol(Mε)

Proposition

Let G ⊂ Hol (Mε) be a regular subgroups different from Mε. Let
H1 = G ∩Mε = 〈u, v〉 and H2 = Θ(G) ⊆ Aut(Mε). The
following holds.

1 If στ d ∈ H1, for some d, then |Θ(G)| = p.

2 If σ 6∈ H1, then σp
r ∈ H1 for some r < n.

3 If τ ∈ H1, then H2 must have one generator.

4 The subgroup G is generated by two elements, and it cannot
be outside of the forms〈

στ d, τw2αa1p
n−2

1 αa22 α
a3
3

〉
, 〈τ, σw1αa11 α

a2
2 α

a3
3 〉 ,

〈xαa11 , yαa22 αa33 〉 , 〈xαa11 α2, yα
a2
1 α3〉 .

for some a1, a2, a3, d, w1, w2, and x, y ∈Mε.
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Skew Braces of Type Mε

In order to find the non-isomorphic skew braces we need a
general conjugation formula.

Theorem

Let g = vαa11 α
a2
2 α

a3
3 for natural numbers a1, a2, a3, r, and an

element v = σv1τ v2 ∈Mε. Take α = αr33 β ∈ Aut(Mε). Then we
have

αgrα−1 = σkrrp
n−1+b1v1

∑r−1
j=1(p+1)a1j−1 (α · v)r τ

1
2
r(r−1)a2b1v1

α
a2r3b

−1
1 bε4rp

n−2+a2
1
2(b
−1
1 −1)rpm−1−a3b3bε4rpn−2+ 1

2
a2a3r(r−1)pn−2

1

αa1r1 α
a2b
−1
1 bε4r

2 α
a3b1b

−ε
4 r

3

for some integer kr.
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Skew Braces of Type Mε and Corresponding HGS

Now using the Proposition and Theorem in the previous two
slides go through all relevant regular subgroups according to
|Θ(G)| = pr. For each r = 1, ..., n:

1 Classify regular subgroups.

2 Find skew braces using conjugation formula.

3 Determine automorphism groups of skew braces.

4 Count Hopf-Galois structures as parametrised by skew
braces.
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Example |Θ(G)| = p

Proposition

For |Θ(G)| = p there are exactly 5p− 7 M0-skew braces of M0

type and 5 M1-skew braces of M0 type. Furthermore, we have 5
M0-skew braces of M1 type and 3 M1-skew braces of M1 type.
I.e., Write ẽ(G,N, p), the number of skew braces with
|Θ(G)| = p. Then we have

ẽ(M0,M0, p) = 5p− 7,

ẽ(M1,M0, p) = 5,

ẽ(M0,M1, p) = 5,

ẽ(M1,M1, p) = 3.



49/52

Skew Braces of M0-type
automorphism groups of M0-skew braces of M0 type

AutBr
(〈
τ, σαp

n−2

1

〉)
=
{
αr33

[
b1 0
b3 1

]
∈ Aut(M0) | b1 ≡ 1 mod p

}
AutBr

(〈
τ, σαa33

〉)
=
{
αr33

[
b1 0
b3 1

]
∈ Aut(M0) | b3 = 0

}
for a3 6= 0, 1

AutBr
(〈
τ, σαt2α

a3
3

〉)
=
{
αr̃3

[
b1 0
b3 1

]
∈ Aut(M0) | b1 ≡ ±1 mod p

}
for a3 6= 1, t = 1, δ

AutBr
(〈
σ, ταa1p

n−2

1

〉)
=
{
αr33

[
b1 0
b3 1

]
∈ Aut(M0) | b3 = 0

}
for a1 6= −1, 0

AutBr
(〈
σ, ταa1p

n−2

1 α3

〉)
=
{
αr33

[
b1 0
b3 1

]
∈ Aut(M0) | b3 = 0, b1 = 1 mod p

}
for a1 6= −1

automorphism groups M1-skew braces of M0 type

AutBr (〈τ, σα3〉) =
{
αr33

[
b1 0
b3 1

]
∈ Aut(M0) | b3 = 0

}
AutBr

(〈
τ, σαt2α3

〉)
=
{
αr̃3

[
b1 0
b3 1

]
∈ Aut(M0) | b1 ≡ ±1 mod p

}
for t = 1, δ

AutBr
(〈
σ, τα−p

n−2

1

〉)
=
{
αr33

[
b1 0
b3 1

]
∈ Aut(M0) | b3 = 0

}
AutBr

(〈
σ, τα−p

n−2

1 α3

〉)
=
{
αr33

[
b1 0
b3 1

]
∈ Aut(M0) | b3 = 0, b1 ≡ 1 mod p

}
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Skew Braces of M1-type

automorphism groups of M0-skew braces of M1 type

AutBr (〈τ, σα3〉) =
{
αr33

[
b1 0
b3 b4

]
∈ Aut(M1) | b3 = 0, b4 = 1

}
AutBr

(〈
τ, σαt2α3

〉)
=
{
αr̃3

[
b1 0
b3 b4

]
∈ Aut(M1) | b21 = b4 ≡ 1 mod p

}
for t = 1, δ,

AutBr
(〈
σ, ταp

n−2

1

〉)
=
{
αr33

[
b1 0
b3 b4

]
∈ Aut(M1) | b3 = 0, b4 = 1

}
AutBr

(〈
σ, ταp

n−2

1 α3

〉)
=
{
αr33

[
b1 0
b3 b4

]
∈ Aut(M1) | b3 = 0, b1 = b4 ≡ 1 mod p

}
automorphism groups of M1-skew braces of M1 type

AutBr
(〈
τ, σαp

n−2

1

〉)
=
{
αr33

[
b1 0
b3 b4

]
∈ Aut(M1) | b1 ≡ 1 mod p

}
AutBr (〈τ, σα2〉) =

{
αr̃3

[
b1 0
b3 b4

]
∈ Aut(M1) | b21 = b4 mod p

}
AutBr (〈σ, τα3〉) =

{
αr33

[
b1 0
b3 b4

]
∈ Aut(M1) | b3 = 0, b1 ≡ b24 mod p

}
for some known r̃.
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Corresponding Hopf-Galois Structures

Theorem

Write e(G,N, p), the number of Hopf-Galois structures with
|Θ(G)| = p. Then we have

e(M0,M0, p) = 2p3 − 2p2 − p− 1,

e(M1,M0, p) = 2(p− 1)p2,

e(M0,M1, p) = 2p2,

e(M1,M1, p) = (2p+ 1)(p− 1).

Proof.

Follows by using

e(G,N, p) =
∑
BNG,p

|Aut (G)|∣∣AutBr
(
BN
G,p

)∣∣
and |Aut(Mε)| = (p− 1)ε+1pn+1.
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Concluding Remarks

The case for r = 2, ..., n are work in progress...

The main ingredient for calculations is encapsulated by the
conjugation formula for αgrα−1.

Remains to check that if Mε ↪→ Hol(G) is a regular
embedding, for some G, then G ∼= M0 or M1?

In the above setting G must have at least two generators.

Ideas can extend to a larger project on metacyclic p-groups.

Thank you for your attention!
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