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Earth Observatory2

2Phytoplankton Bloom off Iceland, Moderate Resolution Imaging
Spectroradiometer on NASA’s Aqua satellite, June 24, 2010.
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Overview

Introduce statistical modelling method in order to
characterise uncertainty in ocean colour estimation.

Modelling with Generalised Additive Models for Location,
Scale, and Shape (GAMLSS).

Data on ocean chlorophyll concentrations from the
MODIS instrument aboard NASA’s Terra and Aqua
satellites.

Match satellite and in situ measurements of oceanic
chlorophyll concentrations.

Take explanatory variables provided by satellite and
model via GAMLSS.

Find best-fitting model to explain the error and most
contributing explanatory variables.

This can be used to improve satellite instruments.
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Introduction

Ocean colour is determined with the interaction of Sun
with substances in the ocean, one of which is chlorophyll
produced by marine phytoplankton.

Surface chlorophyll concentration is an important indicator
of the biology and physics within the surface ocean and
crucial for understanding of the Earth System.

Ocean colour is estimated either in situ using boats or
permanent observation stations or by using suitable sensors
on board satellites.

The methods for ocean colour estimation used by NASA
have uncertainties which depend on

Sun-sensor geometry
Atmospheric aerosol load
Cloud contamination

However, satellites covers the Earth in short time, so large
data production!
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Ocean Colour Processing Flags

Several levels of flags based on continuous thresholds are
used to exclude pixels from colour processing.

In this way many outliers are removed from daily or
monthly composites.

At level 2 and 3 NASA satellite masks pixels with

CLDICE: suspected cloud or ice contamination,
HILT: high light, saturating one or more visible channels,
HIGLINT: strong sun glint,
HISATZEN: high satellite view zenith angle,
HISOLZEN: high solar zenith angle,
STLIGHT: stray light from nearby bright pixels.

The problem: if a pixel is just below the threshold for
each of the above, it will be included, but the final
estimation may be unreliable!
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Aims and Data

Aim

In this work we created a statistical model of the difference
between satellite chlorophyll-a, chlSAT reference or validation
data in situ chlorophyll-a, chlIS .

Data

Out response variable is from a skewed χ-squared distribution,
so we need flexible regression techniques

Generalised Gamma Distribution

offered through GAMLSS.
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Satellite Chlorophyll-a chlSAT

First dataset was extracted from NASA’s
Ocean Color WEB level 1 and 2 browser.

This data is a subset of that collected by the MODIS
instrument aboard the Aqua satellite and was recorded
between July 2002 and November 2011.

Typical files: west Coast of US, Wednesday, 6 July 2016,

Quasi True Color Chlorophyll Sea Surface Temperature
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In Situ Chlorophyll-a chlIS

Another dataset of 359 in situ High Performance Liquid
Chromatography (HPLC) surface ocean chlorophyll-a (chl)
measurements from 2002 to 2011.

http://rpubs.com/KayvanNejabati/551817

Mostly from European shelf seas but including some data
from the open North Atlantic, the Mediterranean, and the
North Pacific.
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Matching Data

For each chlIS measurement, we searched for all
overlapping MODIS-Aqua overpasses within ±12h.

We use a subset, information about some of the variables

In situ: timeI, lonI, latI, chlorI.
Satellite: satid, lonS, latS, chlorS.
Matching: distkm, timediffmin.
Pixels Quality:

sdlnchlor standard deviation of the error,
nchl number of measurements, available each in a pack of 9.

Spacial Variables:

senzr the sensor view angle relative to the zenith,
solzr the angle of the Sun relative to the zenith,
windspeed, the speed of wind,
tlg869 the specular reflection of the sea surface transmitted
to the top of atmosphere,
taua869 and many others.
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Error of Measurements

Definition of Error

We defined it to be the difference squared of the log of the values
of measurements

Error = (log (chlorI)− log (chlorS))2 =

(
log

(
chlorI

chlorS

))2

.

Distribution of Error

It is thought that the distribution of chlorophyll-a is
log-normal.

Expect the error to be from a χ2 distribution on one degree
of freedom.

May use a Gamma distribution to model the data.

Though Error seems to be follow a skewed distribution.
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Histogram of Chlorophyll-a
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Statistical Modelling

Requirements

We need a suitable method of modelling which allows for
flexibility

choice of the distribution,
parameters that need to be modelled,
skewness and kurtosis of data,
smoothing methods to be applied.

Find the most suitable model.

A brief review of technology available to come...

Let the response variable be Y with r covariates x1, ..., xr and
sample size n.

Kayvan Nejabati Zenouz Ocean Colour Estimation
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Recall: Multiple Linear Models

Linear Regression

In the linear regression model we assume Yi ∼ N
(
µi, σ

2
)
,

i.e.,

Yi = µi + εi = β0 + β1xi1 + β2xi2 + · · ·+ βrxir + εi

for i = 1, ..., n, where

εi ∼ N (0, σ2).

In particular, εi are i.i.d. from a normal distribution.

We seek to estimate βj for j = 1, ..., r together with σ.
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Estimation of Parameters

Write Y = (Y1, ..., Yn). Design matrix X an n× (r + 1)
where Xi1 = 1 and Xi(j+1) = xij for j = 1, ..., r.

We can write Y ∼ N (µ, σI), i.e.,

Y = µ+ ε = Xβ + ε

with parameters β = (β0, β1, ..., βr).

Estimate for β is given through

β̂ = min
β

(Y −Xβ)T (Y −Xβ) =⇒ β̂ =
(
XTX

)−1
XTY

An unbiased estimated for σ2 by using β̂ is given by

s2 =
ε̂T ε̂

n− r
,

where ε̂ = Y − µ̂.
Kayvan Nejabati Zenouz Ocean Colour Estimation
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Generalised Linear Models

Developed 1972-1989 and Allows for

Normal distribution to be replaced by exponential family
of distributions,

Yi ∼ E (µi, φ) .

A link function g() is used to model the relationship of
E(Y ) and covariates,

ηi = g(µi) = β1xi1 + β2xi2 + · · ·+ βrxir.

Parameter vector β are estimate through iteratively
weighted least square method.

Exponential family distribution E (µi, φ) is defined by
probability distribution function

f(y | µ, φ) = exp

(
yθ − b(θ)

φ
+ c(y, φ)

)
where µ = b′(θ).
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Generalised Additive Models

Developed 1990-2006, a Smoothing Technique

Allows the data to determine the relationship between η and
explanatory variables.

As in GLM we have

Y ∼ E (µ,φ) .

Link function g() is used to model, however we assume

η = g(µ) = Xβ + s1(x1) + s2(x2) + · · ·+ sJ(xJ ),

The terms sj is nonparametric smoothing function applied
to covariate xj for j = 1, ..., j.

However, all these methods are fixed with two parameter:
location µ and scale φ and only regression on former.
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State of the Art: GAMLSS

GAMLSS 2005, Models with Skewness and Kurtosis

The generalised additive model for location, scale and shape.

Here we have,
Y ∼ D (µ,σ,ν, τ ) ,

Y is from a four-parameter family of distributions.

The parameters µ,σ are related to location and shape, and
ν, τ are shape parameters.

Models is extended by

η1 = g1(µ) = X1β1 + s11(x11) + · · ·+ s1J1(x1J1),

η2 = g2(σ) = X2β2 + s21(x21) + · · ·+ s2J2(x2J2),

η3 = g3(ν) = X3β3 + s31(x31) + · · ·+ s3J3(x3J3),

η4 = g4(τ ) = X4β4 + s41(x41) + · · ·+ s4J1(x4J4).
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GAMLSS Features

Algorithm maximises a penalised likelihood function

`p = `− 1

2

4∑
k=1

Jk∑
j=1

γT
kjGkj (λ)γkj where

` (µ,σ,ν, τ ) =

n∑
i=1

log f(yi | µi, σi, νi, τi).

Implementation of in R gamlss supports 100 discrete,
continuous, and mixed distributions.

Creating new and modifying distributions is easy.

Allows linear or nonlinear parametric functions, or
nonparametric smoothing functions.

The additive terms can be chosen from: P-splines, cubic
splines, loess curve fitting, random effects.

Further addition allow for neural networks, decision
tree, random effects, multidimensional smoother.
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Methodology: Distribution

We use a Generalised Gamma distribution as our modelling
distribution, which has pdf

f(y|µ, σ, ν) =
|ν|

Γ(θ)

(
θ

µν

)θ
yθν−1 exp

(
−θy
µν

)
with θ =

1

σ2ν2
.
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Methodology I

Strategy

Start with simple models through glm, gam, etc...

Find significant explanatory variables.

Compare models through R2 values, Akaike Information
Criterion, Global Deviance, etc...

Check residuals and model diagnostic plots for model
validity.

Change distribution to find a suitable one gamlss.

Regress on all distribution parameters: location, scale,
shape.

Kayvan Nejabati Zenouz Ocean Colour Estimation



21

Modelling glm

m1<-glm(Error ~ distkm + atimdifmin + sdlnchlor + nchlor +

senzr + solzr + windspeed + taua869,

family=Gamma(link="log"),

data = matchup)

Estimate Std. Error t value Pr(>|t|)
(Intercept) -1.5331 0.6742 -2.2739 0.0239

distkm -1.1194 0.4138 -2.7051 0.0074
atimdifmin 0.0022 0.0005 4.2502 0.0000

sdlnchlor 2.9764 0.8041 3.7014 0.0003
nchlor -0.0473 0.0498 -0.9515 0.3424
senzr 0.6653 0.3263 2.0392 0.0426
solzr 0.4934 0.4448 1.1091 0.2686

windspeed 0.0150 0.0426 0.3510 0.7259
taua869 -0.6294 1.6231 -0.3878 0.6985

Table: Coefficient Estimations
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Model Checking GLM
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Shapiro-Wilk normality test on residuals:

W = 0.75227, p-value < 10−16
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Modelling gamlss

m3gs<-gamlss(Error ~ cs(distkm) + cs(atimdifmin) +

cs(sdlnchlor) + nchlor + cs(senzr) + cs(solzr) + cs(

windspeed) + cs(taua869),

sigma.fo=~cs(distkm) + cs(atimdifmin),

nu.fo=~cs(distkm) + cs(atimdifmin) +

cs(sdlnchlor) + nchlor + cs(senzr) + cs(solzr) + cs(

windspeed) + cs(taua869),

family=GG(mu.link ="log"),

control=gamlss.control(c.crit = 0.001, n.cyc = 40),

data = matchup)
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Model Checking

Shapiro-Wilk normality test on residuals:

W = 0.99116, p-value = 0.1708
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Results and Discussion

The method was applied to a larger dataset (359
observations) with more explanatory variables

Established a suitable model which explained around 67%
variation as potentially correctable bias.

However, the dataset still covers a limited geographical area.

Potential models allowing for random effect can be though
about.
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Thank you for your attention!3

3The orbiting Aqua/MODIS instrument found the above
phytoplankton-brightened cyclonic eddy swirling in the Tasman Sea on the
first day of November 2019.
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Suggested Reading and References

See http://rpubs.com/KayvanNejabati/551817 for a summary of
statistical models.
References: E. Land et al. (2018); Stasinopoulos et al. (2017).
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