Uncertainty Characterisation in Ocean Colour Estimation

Kayvan Nejabati Zenouz¹

University of Greenwich

The Leslie Comrie Seminar Series

November 20, 2019

Joint work with Land, Peter E.; Bailey, Trevor C.; Taberner, Malcolm; Pardo, Silvia; Sathyendranath, Shubha; Brammall, Vicki; Shutler, Jamie D.; and Quartly, Graham D.

¹Email: K.NejabatiZenouz@gre.ac.uk website: www.nejabatiZ.com Background: Thursday, 4 July 2002 through Sunday, 10 November 2019, https://oceancolor.gsfc.nasa.gov/cgi/browse.pl?sen=am

Content I

Overview

Introduction

3 Background

- Ocean Colour Processing
- Aims and Data

4 Statistical Modelling

- Multiple Linear Models
- Generalised Linear Models
- Generalised Additive Models
- State of the Art: GAMLSS

Methodology

- Results and Discussion
- References

Earth Observatory²

²Phytoplankton Bloom off Iceland, Moderate Resolution Imaging Spectroradiometer on NASA's Aqua satellite, June 24, 2010.

Kayvan Nejabati Zenouz

Overview

- Introduce **statistical modelling** method in order to characterise **uncertainty** in **ocean colour** estimation.
- Modelling with Generalised Additive Models for Location, Scale, and Shape (GAMLSS).
- Data on ocean **chlorophyll concentrations** from the **MODIS** instrument aboard NASA's Terra and Aqua satellites.
- Match satellite and **in situ** measurements of oceanic chlorophyll concentrations.
- Take **explanatory variables** provided by **satellite** and model via GAMLSS.
- Find best-fitting model to explain the error and most **contributing** explanatory **variables**.
- This can be used to **improve** satellite instruments.

Introduction

- Ocean colour is determined with the **interaction** of **Sun** with substances in the **ocean**, one of which is chlorophyll produced by marine phytoplankton.
- Surface chlorophyll concentration is an **important** indicator of the **biology** and **physics** within the surface ocean and crucial for understanding of the **Earth System**.
- Ocean colour is estimated either **in situ** using **boats** or permanent observation stations or by using suitable **sensors** on board **satellites**.
- The **methods** for ocean colour estimation used by **NASA** have uncertainties which depend on
 - Sun-sensor geometry
 - Atmospheric aerosol load
 - Cloud contamination
- However, satellites covers the Earth in short time, so large data production!

- Several levels of **flags** based on **continuous** thresholds are used to exclude pixels from colour processing.
- In this way many outliers are removed from daily or monthly composites.
- At level 2 and 3 NASA satellite masks pixels with
 - CLDICE: suspected cloud or ice contamination,
 - HILT: high light, saturating one or more visible channels,
 - HIGLINT: strong sun glint,
 - HISATZEN: high satellite view zenith angle,
 - HISOLZEN: high solar zenith angle,
 - **STLIGHT:** stray light from nearby bright pixels.
- The problem: if a pixel is just below the threshold for each of the above, it will be **included**, but the final estimation may be **unreliable**!

Aim

In this work we created a **statistical model** of the **difference** between **satellite** chlorophyll-a, chl_{SAT} reference or validation data in situ chlorophyll-a, chl_{IS} .

Data

Out **response variable** is from a skewed χ -squared distribution, so we need flexible regression techniques

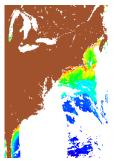
Generalised Gamma Distribution

offered through GAMLSS.

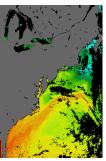
Satellite Chlorophyll-a chl_{SAT}

- First **dataset** was extracted from **NASA's** <u>Ocean Color WEB</u> level 1 and 2 browser.
- This data is a subset of that collected by the **MODIS** instrument aboard the Aqua satellite and was recorded between July 2002 and November 2011.
- Typical files: west Coast of US, Wednesday, 6 July 2016,

Quasi True Color



Chlorophyll



Sea Surface Temperature

Kayvan Nejabati Zenouz

In Situ Chlorophyll-a chl_{IS}

• Another **dataset** of 359 in situ High Performance Liquid Chromatography (HPLC) surface ocean chlorophyll-a (chl) measurements from 2002 to 2011.

http://rpubs.com/KayvanNejabati/551817

• Mostly from **European** shelf seas but including some data from the open **North Atlantic**, the Mediterranean, and the North Pacific.

Kayvan Nejabati Zenouz Ocean Col

Matching Data

- For each chl_{IS} measurement, we searched for all **overlapping** MODIS-Aqua overpasses within ±12h.
- We use a subset, information about some of the variables
 - In situ: timeI, lonI, latI, chlorI.
 - Satellite: satid, lonS, latS, chlorS.
 - Matching: distkm, timediffmin.
 - Pixels Quality:
 - sdlnchlor standard deviation of the error,
 - nchl number of measurements, available each in a pack of 9.
 - Spacial Variables:
 - senzr the sensor view angle relative to the zenith,
 - solzr the angle of the Sun relative to the zenith,
 - windspeed, the speed of wind,
 - tlg869 the specular reflection of the sea surface transmitted to the top of atmosphere,
 - taua869 and many others.

Definition of Error

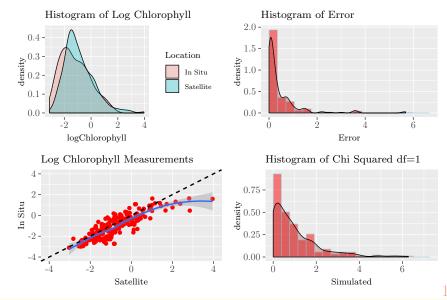
We defined it to be the difference squared of the log of the values of measurements

$$\operatorname{Error} = \left(log \left(\text{chlorI} \right) - log \left(\text{chlorS} \right) \right)^2 = \left(log \left(\frac{\text{chlorI}}{\text{chlorS}} \right) \right)^2.$$

Distribution of Error

- It is thought that the distribution of chlorophyll-a is **log-normal**.
- Expect the error to be from a χ^2 distribution on one degree of freedom.
- May use a **Gamma distribution** to model the data.
- Though Error seems to be follow a **skewed** distribution.

Histogram of Chlorophyll-a



Kayvan Nejabati Zenouz

Requirements

- We need a suitable method of **modelling** which allows for **flexibility**
 - choice of the **distribution**,
 - parameters that need to be modelled,
 - skewness and kurtosis of data,
 - **smoothing** methods to be applied.
- Find the most suitable model.

A brief review of technology available to come...

Let the response variable be Y with r covariates $x_1, ..., x_r$ and sample size n.

Linear Regression

• In the linear regression model we assume $Y_i \sim \mathcal{N}(\mu_i, \sigma^2)$, i.e.,

$$Y_i = \mu_i + \epsilon_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_r x_{ir} + \epsilon_i$$

for i = 1, ..., n, where

 $\epsilon_i \sim \mathcal{N}(0, \sigma^2).$

- In particular, ϵ_i are i.i.d. from a **normal** distribution.
- We seek to estimate β_j for j = 1, ..., r together with σ .

Estimation of Parameters

- Write $Y = (Y_1, ..., Y_n)$. Design matrix X an $n \times (r+1)$ where $X_{i1} = 1$ and $X_{i(j+1)} = x_{ij}$ for j = 1, ..., r.
- We can write $\boldsymbol{Y} \sim \mathcal{N}(\boldsymbol{\mu}, \sigma \boldsymbol{I})$, i.e.,

$$Y = \mu + \epsilon = Xeta + \epsilon$$

with parameters $\boldsymbol{\beta} = (\beta_0, \beta_1, ..., \beta_r).$

• Estimate for β is given through

$$\hat{eta} = \min_{eta} \left(Y - X eta
ight)^T \left(Y - X eta
ight) \Longrightarrow \hat{eta} = \left(X^T X
ight)^{-1} X^T Y$$

• An **unbiased** estimated for σ^2 by using $\hat{\beta}$ is given by

$$s^2 = \frac{\hat{\boldsymbol{\epsilon}}^T \hat{\boldsymbol{\epsilon}}}{n-r},$$

where $\hat{\boldsymbol{\epsilon}} = \boldsymbol{Y} - \hat{\boldsymbol{\mu}}$.

Generalised Linear Models

Developed 1972-1989 and Allows for

• Normal distribution to be replaced by **exponential family** of distributions,

 $Y_i \sim \mathcal{E}(\mu_i, \phi)$.

• A link function g() is used to model the relationship of E(Y) and covariates,

$$\eta_i = g(\mu_i) = \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_r x_{ir}.$$

- Parameter vector β are estimate through iteratively weighted least square method.
- **Exponential** family distribution $\mathcal{E}(\mu_i, \phi)$ is defined by probability **distribution** function

$$f(y \mid \mu, \phi) = \exp\left(\frac{y\theta - b(\theta)}{\phi} + c(y, \phi)\right)$$
 where $\mu = b'(\theta)$.

Developed 1990-2006, a Smoothing Technique

Allows the data to determine the relationship between η and explanatory variables.

• As in GLM we have

$$oldsymbol{Y}\sim\mathcal{E}\left(oldsymbol{\mu},oldsymbol{\phi}
ight)$$
 .

• Link function g() is used to model, however we assume

$$\boldsymbol{\eta} = g(\boldsymbol{\mu}) = \boldsymbol{X}\boldsymbol{\beta} + s_1(\boldsymbol{x_1}) + s_2(\boldsymbol{x_2}) + \dots + s_J(\boldsymbol{x_J}),$$

- The terms s_j is **nonparametric** smoothing function applied to covariate x_j for j = 1, ..., j.
- However, all these methods are fixed with two parameter: location μ and scale ϕ and only regression on former.

State of the Art: GAMLSS

GAMLSS 2005, Models with Skewness and Kurtosis

- The generalised additive model for location, scale and shape.
- Here we have,

$$oldsymbol{Y} \sim \mathcal{D}\left(oldsymbol{\mu}, oldsymbol{\sigma}, oldsymbol{
u}, oldsymbol{ au}
ight),$$

 \boldsymbol{Y} is from a four-parameter family of distributions.

- The parameters μ, σ are related to location and shape, and ν, τ are shape parameters.
- Models is extended by

$$\begin{aligned} \eta_1 &= g_1(\mu) = X_1\beta_1 + s_{11}(x_{11}) + \dots + s_{1J_1}(x_{1J_1}), \\ \eta_2 &= g_2(\sigma) = X_2\beta_2 + s_{21}(x_{21}) + \dots + s_{2J_2}(x_{2J_2}), \\ \eta_3 &= g_3(\nu) = X_3\beta_3 + s_{31}(x_{31}) + \dots + s_{3J_3}(x_{3J_3}), \\ \eta_4 &= g_4(\tau) = X_4\beta_4 + s_{41}(x_{41}) + \dots + s_{4J_1}(x_{4J_4}). \end{aligned}$$

GAMLSS Features

• Algorithm maximises a penalised likelihood function

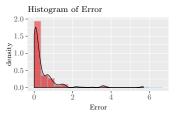
$$\ell_{p} = \ell - \frac{1}{2} \sum_{k=1}^{4} \sum_{j=1}^{J_{k}} \gamma_{kj}^{T} \boldsymbol{G}_{kj} \left(\lambda \right) \boldsymbol{\gamma}_{kj} \text{ where}$$
$$\ell \left(\boldsymbol{\mu}, \boldsymbol{\sigma}, \boldsymbol{\nu}, \boldsymbol{\tau} \right) = \sum_{i=1}^{n} \log f(y_{i} \mid \mu_{i}, \sigma_{i}, \nu_{i}, \tau_{i})$$

- Implementation of in R gamlss supports 100 discrete, continuous, and mixed distributions.
- Creating new and modifying distributions is easy.
- Allows **linear** or **nonlinear** parametric functions, or **nonparametric** smoothing functions.
- The **additive** terms can be chosen from: P-splines, cubic splines, loess curve fitting, random effects.
- Further addition allow for **neural networks**, **decision tree**, **random effects**, **multidimensional smoother**.

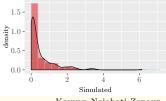
Methodology: Distribution

We use a **Generalised Gamma** distribution as our modelling distribution, which has pdf

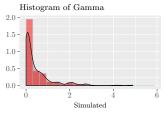
$$f(y|\mu,\sigma,\nu) = \frac{|\nu|}{\Gamma(\theta)} \left(\frac{\theta}{\mu^{\nu}}\right)^{\theta} y^{\theta\nu-1} \exp\left(-\frac{\theta y}{\mu^{\nu}}\right) \text{ with } \theta = \frac{1}{\sigma^2 \nu^2}.$$



Histogram of GGamma



Kayvan Nejabati Zenouz



Histogram of Chi Squared df=1 1.25 1.00 0.75 0.50 0.02 0.00 $\frac{1}{2}$ $\frac{1}{4}$ $\frac{1}{6}$ Simulated

Ocean Colour Estimation

Strategy

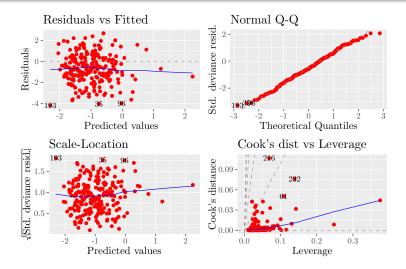
- Start with simple models through glm, gam, etc...
- Find **significant** explanatory variables.
- Compare models through R^2 values, Akaike Information Criterion, Global Deviance, etc...
- **Check** residuals and model **diagnostic plots** for model validity.
- Change distribution to find a suitable one gamlss.
- **Regress** on all distribution parameters: location, scale, shape.

```
m1<-glm(Error ~ distkm + atimdifmin + sdlnchlor + nchlor +
    senzr + solzr + windspeed + taua869,
    family=Gamma(link="log"),
    data = matchup)</pre>
```

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	-1.5331	0.6742	-2.2739	0.0239
distkm	-1.1194	0.4138	-2.7051	0.0074
$\operatorname{atimdifmin}$	0.0022	0.0005	4.2502	0.0000
sdlnchlor	2.9764	0.8041	3.7014	0.0003
nchlor	-0.0473	0.0498	-0.9515	0.3424
senzr	0.6653	0.3263	2.0392	0.0426
solzr	0.4934	0.4448	1.1091	0.2686
windspeed	0.0150	0.0426	0.3510	0.7259
taua869	-0.6294	1.6231	-0.3878	0.6985

Table: Coefficient Estimations

Model Checking GLM



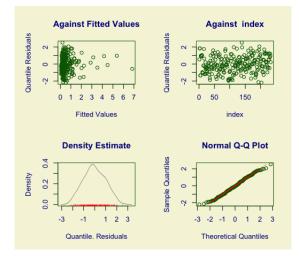
Shapiro-Wilk normality test on residuals:

W = 0.75227, p-value $< 10^{-16}$

Kayvan Nejabati Zenouz Ocean Colour Estimation

```
m3gs<-gamlss(Error ~ cs(distkm) + cs(atimdifmin) +
    cs(sdlnchlor) + nchlor + cs(senzr) + cs(solzr) + cs(
    windspeed) + cs(taua869),
    sigma.fo=~cs(distkm) + cs(atimdifmin),
    nu.fo=~cs(distkm) + cs(atimdifmin) +
    cs(sdlnchlor) + nchlor + cs(senzr) + cs(solzr) + cs(
    windspeed) + cs(taua869),
    family=GG(mu.link ="log"),
    control=gamlss.control(c.crit = 0.001, n.cyc = 40),
    data = matchup)</pre>
```

Model Checking



Shapiro-Wilk normality test on residuals:

W = 0.99116, p-value = 0.1708

Kayvan Nejabati Zenouz Ocean Colour Estimation

- The method was applied to a larger dataset (359 observations) with more explanatory variables
- Established a suitable model which explained around 67% variation as potentially correctable bias.
- However, the dataset still covers a limited geographical area.
- Potential models allowing for random effect can be though about.

Thank you for your attention!³

³The orbiting Aqua/MODIS instrument found the above phytoplankton-brightened cyclonic eddy swirling in the Tasman Sea on the first day of November 2019.

Kayvan Nejabati Zenouz

See http://rpubs.com/KayvanNejabati/551817 for a summary of statistical models.

References: E. Land et al. (2018); Stasinopoulos et al. (2017).

E. Land, P., T. C. Bailey, M. Taberner, S. Pardo,
S. Sathyendranath, Nejabati Zenouz, Kayvan,
V. Brammall, J. D. Shutler, and G. D. Quartly
May 2018. A Statistical Modeling Framework for
Characterising Uncertainty in Large Datasets: Application to
Ocean Colour. *Remote Sensing*, 10.
https://doi.org/10.3390/rs10050695.

Stasinopoulos, M., R. Rigby, G. Heller, V. Voudouris, and
F. De Bastiani
2017. Flexible Regression and Smoothing: Using GAMLSS in
R, Chapman & Hall/CRC The R Series. CRC Press.