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Introduction

Aims

Main aim of this module is to develop an understanding of vector
calculus in science and engineering as well classical techniques
and results in number theory. In particular, by the end of this
part you will be able to...

1 Understand and manipulate real-valued functions.

2 Evaluate multiple integrals including line, surface, and
volume integrals.

3 Apply concepts of vector calculus to study problems in
applied mathematics and theoretical physics.

4 Learn the properties of integers and primes numbers.

5 Analysis congruences and understand key theorems relating
to properties of natural numbers.

6 Know about number theoretic functions and apply your
knowledge to learn about cryptosystems.

Kayvan Nejabati Zenouz MATH1172
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Introduction

Topics to be Covered...

Vector Calculus:
1 Vector Algebra and Real-Valued Functions
2 Differentiation, Gradient, Divergence, Curl
3 Line, Surface, and Volume Integrals
4 Integral Theorems and Applications

Number Theory:
1 Integers and Divisibility
2 Primes and Their Distributions
3 The Theory of Congruences
4 Fermat’s, Wilson’s Theorems, and Number Theoretic

Functions

Kayvan Nejabati Zenouz MATH1172
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Assessment

Assessment

Vector Calculus Assignment, weight 50%, due 19/03/2020.

Closed Book Examination, weight 50%, May 2020.

Guidance for Success

Attend Lectures,

Engage with Tutorials,

Ask Questions, Read Books,

Use Online Resources (Google, YouTube, etc...),

Keep Your Work Organised,

Always Ask for Help.

Useful Software

You may consider using the packages offered by GeoGebra
www.geogebra.org for graphics and geometric manipulations.

Kayvan Nejabati Zenouz MATH1172
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Reading List and References

For reading list see Matthews (2012); Company (2012); Burton
(2011); Kraft and Washington (2018).

Burton, D.
2011. Elementary Number Theory. Mcgraw-Hill.

Company, W.
2012. Vector Calculus, 6th Ed, Marsden & Tromba, 2012:
Vector Calculus, Vector Calculus. Bukupedia.

Kraft, J. and L. Washington
2018. An Introduction to Number Theory with Cryptography,
Textbooks in Mathematics. CRC Press.

Matthews, P.
2012. Vector Calculus, Springer Undergraduate Mathematics
Series. Springer London.
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Class Activity with www.menti.com

Please scan the barcode with your phone in order to take part
in the class activity.

https://www.menti.com/hdk487qe1b

Alternatively, go to www.menti.com on your electronic devices
and enter the access code 86 18 89.

Kayvan Nejabati Zenouz MATH1172
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Intended Learning Outcomes

By the end of this session you will be able to...

1 Understand the main objectives in studying vector calculus.

2 Review the basics of vectors, vector spaces, linear maps.

3 Calculate dot and cross products of vectors.

4 Find length of vectors and angles between two vectors.

5 Learn about real-valued functions and produce graphs and
level sets of functions.

Kayvan Nejabati Zenouz MATH1172
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Introduction

Vector calculus

Properties and partial differentiation of scalar and vector
quantities in two or three dimensions.

It studies

Scalar functions of position and time the form f(x, t); e.g.,

f(x, t) = f(x, y, z, t) = x2 + y2 + z2 − t.

Vector functions of position and time u(x, t); e.g.,

u(x, t) = (u1(x, t), u2(x, t), u3(x, t)) .

Applications

It is the fundamental language of mathematical physics and
used in topics such as Heat Transfer, Fluid Mechanics,
Electromagnetism, Relativity, and Quantum Mechanics.

Kayvan Nejabati Zenouz MATH1172
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History

Plato 429 B.C.

Explain the motion of the heavenly bodies by some
geometrical theory.

World is rational and can be rationally understood. It has
mathematical design.

Euclid 300 B.C. in 11 volumes of Elements geometry is
born.

Muhammad ibn Musa al-Khwarizmi 800 A.D in The
Compendious Book on Calculation by Completion and
Balancing algebra is born.

René Descartes 1637 in La Géométrie invented
coordinate system, analytic geometry born.

Johannes Kepler calculated planetary orbits.

Vectors were conceptualised by Newton 1687, and
formalised by Hamilton.

Calculus was invented by Newton and Leibniz.

Kayvan Nejabati Zenouz MATH1172
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Applications of Vector Calculus: Governing Equations

Heat Transfer

For solid with temperature T (x, t), thermal conductivity K,
density ρ, time t, and c specific heat we have

cρ
∂T

∂t
= ∇ · (K∇T ) .

Fluid Mechanics

For flow velocity u(x, t), density ρ, pressure P , time t, fluid
viscosity µ, and g gravity we have

ρ

(
∂u

∂t
+ u · ∇u

)
= ρg −∇P + µ∇2u, and ∇ · u = 0.

Electromagnetism

For the electric field E(x, t), magnetic field B(x, t), charge
density ρ, current density J , constants ε0, µ0 we have

∇·E =
ρ

ε0
, ∇·B = 0, ∇×E = −∂B

∂t
, ∇×B = µ0

(
J + ε0

∂E

∂t

)
.

Kayvan Nejabati Zenouz MATH1172
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Vectors in R2

We review concepts relating to vectors.

What is a vector?

Think about the 2-dimensional space R2

P (−3, 3)

Q(4, 2)u

v

x

y

Kayvan Nejabati Zenouz MATH1172
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Vectors in R2

What is a vector?

Think about the 3-dimensional space R3

P (−3, 3, 4)

Q(4,−2, 3)

u v
x

y

z

Kayvan Nejabati Zenouz MATH1172
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Vectors in Geometry and Algebra

Geometry: Intuition

Many physical quantities, such as mass, temperature,
pressure, and speed, possess only magnitude, they
are called scalars.

Vectors have magnitude and direction. For
example, velocity, force, and electric field.

Vectors are represented by tuples, for example,

u =

−3
2
4

 , v =

 4
−2
3

 .

We denote vectors by bold letters u or u.

Kayvan Nejabati Zenouz MATH1172
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Vector Addition

Algebraically the result of adding two vectors is
component-wise addition. For example,

if

a =

a1a2
a3

 , b =

b1b2
b3

 ,

then

a+ b =

a1 + b1
a2 + b2
a3 + b3

 .

P (−3, 2, 4)
Q(4,−2, 3)

(1, 1, 7)

u
v

u+ v

x

y

z

Geometrically the result of adding two vectors is obtained by the
parallelogram law.

Kayvan Nejabati Zenouz MATH1172
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Scalar Multiplication

Algebraically the result of multiplying a vector by a scalar λ is
component-wise. For example,

if

a =

a1a2
a3

 ,

then

λa =

λa1λa2
λa3

 .

P (1,−1, 2)

(2,−2, 4)

u

2u

x

y

z

Geometrically the result of adding two vectors is obtained by
scaling the vector, changing direction if λ < 0.

Kayvan Nejabati Zenouz MATH1172
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Example Rn

The n-dimensional Real Euclidean Space

For a natural number n let V = Rn with addition and scalar
multiplication

(u1, u2, ..., un) + (v1, v2, ..., vn) = (u1 + v1, u2 + v2, ..., un + vn)

λ(u1, u2, ..., un) = (λu1, λu2, ..., λun),

0 = (0, 0, ..., 0).

In such case for u = (u1, u2, ..., un) the vector ũ such that
u+ ũ = 0 is give by

−u = (−u1,−u2, ...,−un).

Remark 1:

In this course we will be concerned with Rn particularly for
n = 2, 3 i.e., R2 and R3.

Kayvan Nejabati Zenouz MATH1172
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Vector Operation

Exercise 1:

Let u = (2, 4,−5, 1) and v = (1, 2, 3, 4). Find

u+ v, 3v, −v, 2u− 3v.

Kayvan Nejabati Zenouz MATH1172



22

Algebra: Precision

Properties of Vectors in Rn

Vectors is Rn form a set V, with elements u,v,w, ..., together
with addition + and a scalar multiplication so that

u+ v ∈ V and λu ∈ V for all u,v ∈ V, λ ∈ R.

In addition, for any u,v,w ∈ V and λ, µ ∈ R the following
axioms are satisfied.

Group Axioms 1. u+ v = v + u
2. (u+ v) +w = u+ (v +w)
3. There exists 0 ∈ V such that u+ 0 = u
4. There exists ũ ∈ V such that u+ ũ = 0

ũ is denoted by −u
Scalar Axioms 5. λ(u+ v) = λu+ λv

6. (λ+ µ)u = λu+ µu
7. λ(µu) = (λµ)u
8. 1u = u

In particular, we call V a vector space over R.

Kayvan Nejabati Zenouz MATH1172
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Standard Basic Vectors in R3

The standard unite vectors i = (1, 0, 0), j = (0, 1, 0),
k = (0, 0, 1) are sometimes used to write vectors in R3, so if
a = (a1, a2, a3), then we can also write

a = a1i+ a2j + a3k.

Exercise 2: Vector Spaces

1 Two vectors u = (u1, u2, ..., un) and v = (v1, v2, ..., vn) are
equal if ui = vi for every i = 1, ..., n. Find x, y, z so that

(x− y, x+ z, z − 1) = (1, 2, 3).

2 Function Spaces. Let X be a set and M(X,R) the set of
all functions f : X −→ R with addition and scalar
multiplication

(f + g)(x) = f(x) + g(x)

(λf)(x) = λf(x).

Show M(X,R) satisfies the 8 axioms on slide 22.

Kayvan Nejabati Zenouz MATH1172
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Remark 2: Maps Between Vector Spaces

Give two vector spaces U and V a linear map, or a
homomorphism, between U and V is a function

A : U −→ V
u 7−→ Au

which respects the vector addition and scalar multiplications, so

A(u+ v) = Au+Av and A(λu) = λAu.

For example, all 3× 3 matrices

A =

a11 a12 a13
a21 a22 a23
a31 a32 a33


are linear maps from R3 to R3.

Kayvan Nejabati Zenouz MATH1172
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Points, Vectors, and Lines

Vectors Joining Points

If you have two points P = (x1, ..., xn) and Q = (y1, ..., yn), the
vector starting from P to Q has components

−−→
PQ = (y1 − x1, ..., yn − xn).

For example, the vector joining P = (0, 0, 0) and Q = (1, 1, 1) is

−−→
PQ = i+ j + k.

Equation of a Line

The parametric equation of a line through the tip of a vector a
and in the direction of v is

l(t) = a+ vt.

Kayvan Nejabati Zenouz MATH1172
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Planes

Example

The line through the tip of j + 2k in the direction of 2i+ 4k is

l(t) = 3ti+ j + (2 + 4t)k.

Alternatively, the algebraic equation for the line is given by
the intersection fo the two plan

y = 1 and
x

3
=
z − 2

4
.

Equation of a Plane

Two nonparallel vectors a and b span a plane

v(s, t) = sa+ tb.

Exercise 3: Planes

Find parametric and algebraic equation of the plane spanned by
i and j.

Kayvan Nejabati Zenouz MATH1172
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Dot Product

Definition (Inner or Dot Product)

Given two vectors a = (a1, ..., an) and b = (b1, ..., bn) the dot
product of a and b is given by

a · b =

n∑
i=1

aibi = a1b1 + · · ·+ anbn.

Example

The dot product of a = 3i+ 2j − k and b = i− j − k is

a · b = 3× 1− 2× 1 + 1× 1 = 2.

Exercise 4: Dot Product

Find the following dot products.

i · i, j · j, k · k, i · j, j · k, i · (a1i+ a2j + a3k) .

Kayvan Nejabati Zenouz MATH1172
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Properties of Dot Product

Remark 3: Properties of Dot Product

Given vectors a, b, and c, in Rn and real numbers α and β, then
following holds.

1 a · a ≥ 0; and a · a = 0 if and only if a = 0.

2 (αa) · b = α (a · b) and a · (βb) = β (a · b).
3 a · (b+ c) = a · b+ a · c and (a+ b) · c = a · c+ b · c
4 a · b = b · a

Exercise 5: Properties

Construct a proof for each of the properties above.

Kayvan Nejabati Zenouz MATH1172
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Length of a Vector and Unit Vectors

Definition (Length of a Vector)

The norm of a vector a denoted by ‖a‖ is given by

‖a‖ =
√
a · a,

so if a = a1i+ a2j + a3k, then we have

‖a‖ =
√
a21 + a22 + a23.

It follows from Pythagorean Theorem that the norm of a
coincides with the length of a.

Exercise 6: Unit Vectors

Prove that for a vector a, the vector

â =
a

‖a‖

has length 1, it is called the normalised vector.
Kayvan Nejabati Zenouz MATH1172
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Distance Between Points and Angles

Distance Between Points

Let a and b be vectors with tips P and Q respectively, then the
distance between P and Q is∥∥∥−−→PQ∥∥∥ = ‖b− a‖ .

Theorem (Angles Between Vectors)

Let a and b be vectors in R3 and let 0 ≤ θ ≤ π be the angle
between them. Then we have

a · b = ‖a‖ ‖b‖ cos θ.

Proof.

Exercise. Hint: use the cosine rule from trigonometry.

Kayvan Nejabati Zenouz MATH1172
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Consequences

Example

Let a = i+ j and b = 2j, then we have

a · b = 2, a · a = 2, b · b = 4, so

2 =
√

2×
√

4 cos θ

which implies that

cos θ =

√
2

2
, so θ =

π

4
.

Corollary (Cauchy-Schwartz Inequality)

Let a and b be vectors in R3. Then we have

|a · b| ≤ ‖a‖ ‖b‖ .

Kayvan Nejabati Zenouz MATH1172
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Orthogonal Projection and Triangle Inequality

Orthogonal Projection

Given two vectors a and v the orthogonal projection of v on a is
given by

p =
a · v
‖a‖2

a.

Theorem (Triangle Inequality)

For vectors a and b we have

‖b+ a‖ ≤ ‖a‖+ ‖b‖ .

Proof.

Exercise. Hint: expand ‖b+ a‖2 and use the Cauchy-Schwartz
Inequality.

Kayvan Nejabati Zenouz MATH1172
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Applications

Displacement and Velocity

If an object has a constant velocity v and travels for t seconds,
then the displacement is a function of time (in fact a line), given
by

d = vt.

Work Done Against a Force

If a constant force F acts on a body and is displaced by d, then
the work done against the force is give by

−F · d.

Equation of a Plane

Let r = xi+ yj + zk, and a 6= 0 be a fixed vector. Then the
equation of a plane perpendicular to a is

r · a = xa1 + ya2 + za3 = c for some c ∈ R.
Kayvan Nejabati Zenouz MATH1172
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Cross Product Introduction

The cross product of two vectors a and b written as a× b is a
vector perpendicular to both a and b whose magnitude is

‖a‖ ‖b‖ sin θ.

‖a× b‖

a

b

a× b

θ

The upward direction of a× b is know as the right-handed rule.

Kayvan Nejabati Zenouz MATH1172
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Cross Product Computation

Definition (Cross Product)

Given two vectors a and b the cross product is defined as the
determinant of a certain matrix formed by a and b,

a× b =

∣∣∣∣∣∣
i j k
a1 a2 a3
b1 b2 b3

∣∣∣∣∣∣ =

∣∣∣∣a2 a3
b2 b3

∣∣∣∣ i− ∣∣∣∣a1 a3
b1 b3

∣∣∣∣ j +

∣∣∣∣a1 a2
b1 b2

∣∣∣∣k.
Example

The cross product of a = 3i+ 2j − k and b = i− j − k is

a× b =

∣∣∣∣∣∣
i j k
3 2 −1
1 −1 −1

∣∣∣∣∣∣
= (2×−1−−1×−1) i− (3×−1−−1× 1) j

+ (3×−1−−1× 1)k = −3i+ 2j − 2k.

Kayvan Nejabati Zenouz MATH1172
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Properties of Cross Product

Remark 4: Properties of Cross Product

Given vectors a, b, and c, in R3 and real numbers α and β, the
following holds.

1 a× b = −b× a; thus a× a = 0.

2 (αa)× b = α (a× b) and a× (βb) = β (a× b).
3 a× (b+ c) = a× b+ a× c and (a+ b)× c = a× c+ b× c

Exercise 7: Cross Product

Find the following cross products.

i× i, j×j, k×k, i×j, j×k, i×k, i× (a1i+ a2j + a3k) .

Prove the properties in Remark 4.

Kayvan Nejabati Zenouz MATH1172
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Scalar Triple Product

The scalar triple product of three vectors a, b, and c, in
R3 is defined determinant of the matrix with rows a, b,
and c, so

[a, b, c] = a · b× c =

∣∣∣∣b2 b3
c2 c3

∣∣∣∣ a1 − ∣∣∣∣b1 b3
c1 c3

∣∣∣∣ a2 +

∣∣∣∣b1 b2
c1 c2

∣∣∣∣ a3.
Geometrically its magnitude is the volume of parallelepiped
formed by the three vectors.

The scalar product has the following properties.
1 a · b× c = a× b · c
2 a · b× c = b · c× a = c · a× b
3 The triple product is zero if any of the two vectors are

parallel.

Kayvan Nejabati Zenouz MATH1172
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Applications

Solid Body Rotation

Let r = xi+ yj + zk, and Ω = Ωk for some fixed Ω. Then the
vector

r ×Ω = Ωyi− Ωxj

is the rotation of r around the z-axis with angular velocity Ω.

Exercise 8: Triple Product

A particle with mass m and electric charge q moves in a uniform
magnetic field B. Given that the force F on the particle is
F = qv ×B, with v the velocity of the particle, show that the
particle has constant speed.

Kayvan Nejabati Zenouz MATH1172
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Real-Valued Functions

Let f be a function whose domain is a subset U ⊂ Rn range
contained in Rm, so

f : U ⊆ Rn −→ Rm

x = (x1, x2, ..., xn) 7−→ f(x) = (f1(x), ..., fm(x)).

If m = 1, then f is called an scalar-valued function, or a scalar
field, for example

f(x, y, z) =
√
x2 + y2 + z2.

If m > 1, then f is called an vector-valued function, or a vector
field, for example

F (x, y, z) =

(√
x2 + y2 + z2,

y√
x2 + y2 + z2

)
.

Kayvan Nejabati Zenouz MATH1172
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Scalar Field

Scalar fields produce a single value for each position.
Temperature of a square plate is a scalar field, so for each
position we have a value T (x, y).
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level

Level Curves

Level curves are given by x2 + y2 = c for different values of
c > 0.
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Vector Fields

Vector Fields assign a vector to each position, e.g., consider
velocity of a fluid on a square plate u(x, y)
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Vector Field u = (−y, x)
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Graphs

Definition (Graph of a Function)

Let f : U ⊂ Rn −→ Rm be a function. Then the graph of f is a
subset of Rn+m defined as

graph f = {(x1, ..., xn, f1(x), ..., , fm(x)) | x = (x1, ..., xn) ∈ U} .

Example

The graph of f : R2 −→ R given by f(x, y) = x2 − y2 is

graph f =
{(
x, y, x2 − y2

)
| x = (x, y) ∈ R2

}
.

−1
0

1 −1
0

1

−2

0

2

x y

f

f(x, y) = x2 − y2
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Level Curves and Surfaces

Definition (Level Curves and Surfaces)

Let f : U ⊂ Rn −→ R be a function and c ∈ R. Then level set of
value c for f is the set of point x ∈ U such that f(x) = c. If
n = 2, we have curves, and for n = 3 we have surfaces.

The level curves of f : R2 −→ R given by f(x, y) = x2 − y2 are

-1

0

1

-1 0 1

x

y

-1

0

1

2

level
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Exercise 8: Scalar and Vector Fields

Produce graphf and level curves of f for f(x, y) = x2 + y.

For F (x, y) = (−x,−y) plot the vector field.
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Summary

What we did today...

Vector Algebra

Vectors, Spaces, Linear Maps
Dot and Cross Product

Lengths, Angles, Inequalities
Real-Valued Functions

Scalar, Vector Fields
Visualisations

Graphs, Level Surfaces
Next Time

Differentation, grad, div, curl

“In these days the angel of topology and the devil of abstract
algebra fight for the soul of every individual discipline of

mathematics.”

Hermann Weyl 1885-1955, Mathematician and Philosopher
Kayvan Nejabati Zenouz MATH1172



Topic 2
Differentiation, Gradient, Divergence, Curl
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F = r × k + zk = yi− xj + zk
∇ · F = 1, ∇× F = −2k
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f = xe−x
2−y2

z = 0.65e−0.652 + (1− 2× 0.652)e−0.652(x− 0.65)

∇f =
(
(1− 2x2)i− 2xyj

)
e−x

2−y2
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Lecture Contents

1 Introduction
Module Aims and Assessment
Topics to be Covered
Reading List and References

2 Topic 1: Vector Algebra and Real-Valued
Functions

Introduction
Vectors Algebra
Euclidean Space
Dot and Cross Products
Real-Valued Functions

3 Topic 2: Differentiation, Gradient,
Divergence, Curl

Continuity of Multivariate Functions
Differentiation of Multivariate Functions
Gradient of a Scalar field
Divergence of a Vector Field
Curl of a Vector Field
Mixed Partial Derivative and Laplacian

4 Topic 3: Line, Surface, and Volume Integrals
Line Integrals
Surface Integrals
Volume Integrals

5 Topic 4: Integrals Theorems and
Applications

Gauss’s (Divergence) Theorem
Stokes’ Theorem

6 Topic 1: Integers and Divisibility
Methods of Number Theory
Well-Ordering Principle and Archimedes
Property
Polygonal Numbers
The Division Algorithm
Greatest Common Divisor
The Euclidean Algorithm
The Diophantine Equation ax + by = c

7 Topic 2: Primes and Their Distribution
Prime Numbers
Fundamental Theorem of Arithmetic
Distribution of Primes
Goldbach’s Conjecture
Primes in Arithmetic Progression

8 Topic 3: The Theory of Congruences
Basic Properties of Congruences
Cancellation Rule
Representations of Integers
Linear Congruences
Chinese Remainder Theorem

9 Topic 4: Fermat’s, Wilson’s Theorems, and
Number Theoretic Functions

Fermat’s Little Theorem and
Pseudoprimes
Wilson’s Theorem
Number Theoretic Functions
Applications to RSA Cryptosystem
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Intended Learning Outcomes

By the end of this session you will be able to...

1 Understand continuity and differentiation of multivariate
functions.

2 Calculate partial derivatives of multivariate functions.

3 Compute the gradient and Laplacian of scalar fields.

4 Calculate the divergence and curl of vector fields.

Kayvan Nejabati Zenouz MATH1172



49

Multivariate Functions

Let f be a function whose domain is a subset U ⊂ Rn range
contained in Rm, so

f : U ⊆ Rn −→ Rm

x = (x1, x2, ..., xn) 7−→ f(x) = (f1(x), ..., fm(x)).

Recall: if m = 1, then f is a scalar field, for example,

f(x, y) = x+ y, g(x, y) = x2 + y2, h(x, y) = xy.

If m > 1, then f is a vector field, for example,

F (x, y) = (x, 0) , F (x, y) = (x, y) , F (x, y) = (y, 0) .

If n = 1, then f is called a path for example,

f(x) = (x, x2, x3), f(x) = (cosx, sinx, x).

We will be interested in the properties of these functions
involving continuity and differentiability.
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Continuity of Multivariate Functions

Let
f : U ⊆ Rn −→ Rm

be a real-valued function, x0 ∈ U , and b = f(x0).

The continuity of f is concerned with the behaviour of f
on the points in the neighbourhood of x.

If f well-behaved around x0, we say f is continuous at x0

In general we say f(x) approaches b as x approaches x0

and write
lim

x→x0

f(x) = b.

Definition (Continuity)

Let f : U ⊆ Rn −→ Rm and x0 ∈ U , then we say f is
continuous at x0 if for every number ε > 0 there exists a
number δ > 0 such that for every x ∈ U with ‖x− x0‖ < δ
implies that ‖f(x)− f(x0)‖ < ε.
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Examples of Continuity

The function f(x, y) = xy is everywhere continuous on R2.

−1
0

1 −1
0

1

−2

0

2

x y

f(x, y) = xy

−1
0

1 −1
0

1

−10

0

10

x y

g(x, y) = x
y

The function g(x, y) =
x

y
is not continuous on all point of the

line y = 0 and continuous everywhere else. Continuity really
means that there are no ”breaks” in the graph of the function.
We will be working with continuous functions.

Kayvan Nejabati Zenouz MATH1172



52

Differentiation of Multivariate Functions

Differentiation is concerned with approximation of
function with linear functions.

Recall is the case f : R −→ R the value f ′(x0) denotes the
slope of the tangent line at x0, and we had

f ′(x0) =
df

dx
= lim

x→x0

f(x)− f(x0)

x− x0
.

For example,

x0 = 2

x

f

f(x) = x3 + 1

Tx0=2(x) = 9 + 12(x − 2)

f ′(x) = 3x2
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Partial Derivatives I

In the case of multivariate functions say

f : U ⊆ Rn −→ Rm

x = (x1, x2, ..., xn) 7−→ f(x) = (f1(x), ..., fm(x)).

We can calculate the derivative of the function f in the
direction of a vector v, using

dfv = lim
h→0

f(x+ hv)− f(x)

h
.

We can have the derivative of the function f in the direction
of a vector unit vectors i, j, k.

Kayvan Nejabati Zenouz MATH1172
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Partial Derivatives II

Definition (Partial Derivative)

Let f : U ⊆ R3 −→ R be a real-valued function. Then
∂f

∂x
,
∂f

∂y
,
∂f

∂z
the partial derivatives of f with respect to x, y, z

are real-values functions defined by

∂f

∂x
= lim

h→0

f(x+ hi)− f(x)

h
= lim

h→0

f(x+ h, y, z)− f(x, y, z)

h
∂f

∂y
= lim

h→0

f(x+ hj)− f(x)

h
= lim

h→0

f(x, y + h, z)− f(x, y, z)

h

∂f

∂z
= lim

h→0

f(x+ hk)− f(x)

h
= lim

h→0

f(x, y, z + h)− f(x, y, z)

h

For example,
∂f

∂x
is the derivative of f with respect to x

assuming y and z are kept constant.
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Example and Exercise

Example

If f(x, y, z) = x2y + y3 + sin z, find
∂f

∂x
,
∂f

∂y
, and

∂f

∂z
.

Solution: To find
∂f

∂x
assume y and z are constant, so

∂f

∂x
= 2xy,

similarly
∂f

∂y
= x2 + 3y2 and

∂f

∂z
= cos z.

Exercise 1: Partial Derivative

Find the all partial derivatives of the function

f(x, y) = x2 + y2 + xy, g(x, y) = xe−x
2−y2

, h(x, y, z) = sinxyz.
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Tangent Spaces

Partial derivatives can be used to approximate functions
using linear spaces.

Given a function say f : U ⊆ R2 −→ R, and
x0 = (x0, y0) ∈ U we can write the equation of tangent plane
to the graphf at (x0, y0, f(x0)) by

z = f(x0) +
∂f

∂x
(x0)(x− x0) +

∂f

∂y
(x0)(y − y0).

If we had f : U ⊆ R3 −→ R, then we would have the
equation of tangent space would be

t = f(x0)+
∂f

∂x
(x0)(x−x0)+

∂f

∂y
(x0)(y−y0)+

∂f

∂z
(x0)(z−z0).

Exercise 2: Tangent Spaces

Find the tangent plane to the graph of g(x, y) = xe−x
2−y2

at

x0 =
(√

2
2 , 0

)
.
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Matrix of Partial Derivatives

In the general case of functions

f : U ⊆ Rn −→ Rm

x = (x1, x2, ..., xn) 7−→ f(x) = (f1(x), ..., fm(x)),

we can calculate an m× n matrix of partial derivatives

T = Df(x0) =


∂f1
∂x1

∂f1
∂x2

· · · ∂f1
∂xn

...
...

...
∂fm
∂x1

∂fm
∂x2

· · · ∂fm
∂xn

 .

where ∂fi/∂xj is evaluated at x0. For example, if n = m = 3,

Df(x0) =


∂f1
∂x

∂f1
∂y

∂f1
∂z

∂f2
∂x

∂f2
∂y

∂f2
∂z

∂f3
∂x

∂f3
∂y

∂f3
∂z

 .
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Differentiability in General Case and Gradient

Definition (Differentiable or C1 Function)

Let f : U ⊆ Rn −→ Rm be a function, we can f is differentiable
at x0 ∈ U if the partial derivatives of f exist at x0 and if

lim
x→x0

‖f(x)− f(x0)− T (x− x0)‖
‖x− x0‖

= 0,

where T (x− x0) is the matrix multiplication of T with x− x0.

Exercise 3: Matrix of Derivatives

Find the matrix of partial derivatives of f(x, y, z) = (y,−x, z).
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Properties of Derivative Df(x0)

Remark 1: Properties of Derivative

Let f, g : Rn −→ Rm and h : Rm −→ Rp, and c ∈ R. We may
write Df for Df(x0) etc... Then following holds.

1 Constant Multiple Rule:

D (cf) = cDf

2 Sum Rule:
D (f + g) = Df +Dg

3 Product Rule:

D (fg) = gDf + fDg

4 Chain Rule:
D (h ◦ f) = DhDf

Kayvan Nejabati Zenouz MATH1172
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Gradient

Definition (Gradient)

Let f : U ⊆ Rn −→ R be a scalar field, then the row vector of
derivatives

Df(x0) =

(
∂f

∂x1
,

∂f

∂x2
, · · · , ∂f

∂xn

)
.

is called the gradient of f denoted by ∇f of gradf .

Example

If f : U ⊆ R3 −→ R, then ∇f =
∂f

∂x
i+

∂f

∂y
j +

∂f

∂z
k. For

example, for f(x, y, z) = xey + z, we have

∇f = eyi+ xeyj + k.

Exercise 4: Gradient

Find the gradient of f(x, y) = xe−x
2−y2

.
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Gradient and Directional Derivative

Let f : U ⊆ R3 −→ R be a scalar filed. Consider the line starting
at a point x in the direction of v inside U , i.e.,

l(t) = x+ tv, for t ∈ R.

We may ask how fast is f changing along l.

−1
0

1 −1
0

1

0

2

4

x y

f(x, y) = x2 + y2

f(l(t)) = f(−1, t)
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Directional Derivative

Definition (Directional Derivative)

If f : R3 −→ R, the directional derivative of f at x along v,
which is normally a unit vector, is given by

d

dt
f(x+ tv)

∣∣
t=0

if it exists.

Theorem

If f : R3 −→ R is differentiable, the directional derivative of f
at x along v exists and we

d

dt
f(x+ tv)

∣∣
t=0

= ∇f · v = v1
∂f

∂x
+ v2

∂f

∂y
+ v3

∂f

∂z
.

Exercise 4: Gradient

Compute the rate of change of f(x, y) = xe−x
2−y2

along v = i at
the point (0, 0).
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Properties of Gradient

Theorem (Direction of Fastest Increase)

If f : R3 −→ R and ∇f 6= 0, then ∇f points in the direction
along which f increases fastest.

Proof.

Let n be a unit vector, then the rate of increase of f in the
direction of n is ∇f · n = ‖∇f‖ cos θ, where θ is the angle
between ∇f and n, maximum increase happens when θ = 0.

Theorem (Gradient Normal to Level Surfaces)

If f : R3 −→ R and x0 is a point in the level surface S given by
f(x, y, z) = k, for some k, then ∇f(x0) is normal to the level
surface. That is if v is a tangent vector at t = 0 to a path c(t) in
S with c(0) = x0, the ∇f(x0) · v = 0.
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Applications of Gradient

Remark 2: Vector Property of Gradient

If f : R3 −→ R, then the gradient

∇f =
∂f

∂x
i+

∂f

∂y
j +

∂f

∂z
k

can be considered as a vector field, so

∇f : R3 −→ R3.

If p denotes the pressure of a gas, then there is a force F
acting on a volume δV due to the pressure gradient given by

F = ∇pδV.
A material has constant thermal conductivity K and
variable temperature T (r). Because of temperature
variation heat flow from the hot to the clod regions. The
heat flux q is given by

q = −K∇T.Kayvan Nejabati Zenouz MATH1172
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Divergence of a Vector Field

Lets consider vector fields, which are functions of the form

F : U ⊆ R3 −→ R3

x = (x, y, z) 7−→ F (x) = (F1(x), F2(x), F3(x)).

δV

Divergence of a vector field is a scalar field, roughly
corresponds to the amount of flux of F out of a small volume δV
divided by volume of δV .
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Divergence

Definition (Divergence)

If F = F1i+ F2j + F3k is a vector field, the divergence of F is
a scalar field given by

divF = ∇ · F =
∂F1

∂x
+
∂F2

∂y
+
∂F3

∂z
.

Example

If F = yi− xj + zk, then

∇ · F = 1.

Exercise 5: Divergence

Let F = x2yi+ zj − xyzk. Compute

∇ · F .
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Divergence Interpretations

Divergence is related to sources and sinks.

−2 −1 0 1 2
−2

−1

0

1

2

x

y

u = (−y, x), ∇ · u = 0

−2 −1 0 1 2
−2

−1

0

1

2

x

y

u = (x, y), ∇ · u = 2
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Curl of a Vector Field

Lets consider vector fields, F (x) = (F1(x), F2(x), F3(x)) as
before.

Curl of a vector field is a vector field, roughly corresponds to the
rotation or twisting of F .
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Curl

Definition (Curl)

If F = F1i+ F2j + F3k is a vector field, the curl of F is a vector
field given by

CurlF = ∇× F =

∣∣∣∣∣∣∣∣
i j k
∂

∂x

∂

∂y

∂

∂z
F1 F2 F3

∣∣∣∣∣∣∣∣
=

(
∂F3

∂y
− ∂F2

∂z

)
i−

(
∂F3

∂x
− ∂F1

∂z

)
j +

(
∂F2

∂x
− ∂F1

∂y

)
k.

Example

If F = yi− xj + zk, then ∇× F = −2k.

Exercise 5: Curl

Let F = x2yi+ zj − xyzk. Compute ∇× F .
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Curl Interpretations

Curl is related to twisting.

∇× (−yi+ xj) = 2k ∇× (xi+ yj) = 0

Some Nice Interpretations

https://www.youtube.com/watch?v=rB83DpBJQsE.
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Mixed Partial Derivative

Definition (Second Partial Derivatives and C2 Functions)

Let f : U ⊆ R3 −→ R be a real-valued function differentiable
function. The second partial derivates of f are

∂

∂x

∂f

∂x
=
∂2f

∂x2
,
∂

∂y

∂f

∂y
=
∂2f

∂y2
,
∂

∂z

∂f

∂z
=
∂2f

∂z2
,
∂

∂y

∂f

∂x
=

∂2f

∂y ∂x
,

∂

∂y

∂f

∂z
=

∂2f

∂y ∂z
, etc...

There are 9 partial derivative, the function f is call twice
continuously differentiable, or C2, if all these partial derivatives
exist.

Theorem (Equality of Mixed Derivatives)

If f(x, y) is of class C2, then mixed partial derivatives are equal,
that is ∂2f

∂x ∂y
=

∂2f

∂y ∂x
.
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Laplacian

Laplacian is related to second derivatives of scalar and vector
fields.

Definition (Laplacian of a Scalar Field)

If f : U ⊆ R3 −→ R is a scalar field, the Laplacian of f is defined
as the divergence of gradient of f

∇ · ∇f = ∇2f =
∂2f

∂x2
+
∂2f

∂y2
+
∂2f

∂z2
.

Example

If f = xy, then
∇2f = 0.
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Summary: What we did...

Multivariate Functions

Continuity and Differentiation
Gradient ∇f

Scalar Fields
Divergence ∇ · F

Vector fields
Curl ∇× F

Vector fields
Laplacian ∇2f

Scalar fields
Next Time

Line, Surface, and Volume Integrals
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Topic 3
Line, Surface, and Volume Integrals∫
C
f ‖dr‖ =

∫
t
f(r)

∥∥∥∥drdt
∥∥∥∥ dt∫

S
f ‖dS‖ =

∫
v

∫
u
f(ψ)

∥∥∥∥∂ψ∂u × ∂ψ

∂v

∥∥∥∥ dudv∫
V
fdV =

∫
w

∫
v

∫
u
f(φ)

∣∣∣∣∂φ∂u · ∂φ∂v × ∂φ

∂w

∣∣∣∣ dudvdw∫
C
F · dr =

∫
t
F (r) · dr

dt
dt∫

S
F · dS =

∫
v

∫
u
F (ψ) · ∂ψ

∂u
× ∂ψ

∂v
dudv∫

V
F dV =

∫
w

∫
v

∫
u
F (φ)

∣∣∣∣∂φ∂u · ∂φ∂v × ∂φ

∂w

∣∣∣∣ dudvdw
74
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Intended Learning Outcomes

By the end of this session you will be able to...

1 Understand integration of scalar and vector fields.

2 Calculate line, surface, and volume integrals for real-valued
functions
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Line Integrals

We can now study the integration methods for vector valued
function.

Definition (Line/Path Integerals)

The path integral of f(x, y, z) along a C1 path
r(t) : [a, b] −→ R3 is defined by∫

C
f ‖dr‖ =

∫ b

a
f(r(t))

∥∥∥∥drdt
∥∥∥∥ dt.

For a vector-valued function F (x, y, z), we have∫
C
F · dr =

∫ b

a
F (r) · dr

dt
dt.

Therefore, we evaluate f on each point of the path r(t), multiply

by the infinitesimal path element

∥∥∥∥drdt
∥∥∥∥ and then integrate.
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Example and Exercise

Example

Let f = yz and F (x, y, x) = (−y, x, 0) and path C be given by
r(t) = (t, 3t, 2t) for t ∈ [1, 3]. Calculate the path integrals

1
∫
C f ‖dr‖,

2
∫
C F · dr.

Exercise 1:

1 Let f : R3 −→ R and r : [a, b] −→ R a path C. Compute∫
C ∇f · dr.

Remark 1: Length of a Path

A path integral r : [a, b] −→ R for a path C when f = 1 produces
the length of C, that is

LC =

∫
C
‖dr‖ .
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Surface Integrals

Definition (Surface Integerals)

The surface integral of f(x, y, z) on a parametrised C1 surface
ψ(u, v) : [a, b]× [c, d] −→ R3 is defined by∫

S
f ‖dS‖ =

∫ d

c

∫ b

a
f(ψ)

∥∥∥∥∂ψ∂u × ∂ψ

∂v

∥∥∥∥ dudv.
For a vector-valued function F (x, y, z), we have∫

S
F · dS =

∫ d

c

∫ b

a
F (ψ) · ∂ψ

∂u
× ∂ψ

∂v
dudv.
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Example and Exercise

Example

Let f = z2 and F (x, y, x) = (x, y, z) and surface S be given by
ψ(θ, z) = (cos θ, sin θ, z) for θ ∈ [0, 2π] and z ∈ [−1, 1]. Calculate
the surface integrals

1
∫
S f ‖dS‖,

2
∫
S F · dS.

Remark 2: Area of a Surface

A surface integral with ψ(u, v) : [a, b]× [c, d] −→ R3 for surface S
when f = 1 produces the area of S, that is

AS =

∫
S
‖dS‖ .
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Volume Integrals

Definition (Volume Integerals)

The volume integral of f(x, y, z) on a parametrised C1 volume
φ(u, v, w) : [a, b]× [c, d]× [e, f ] −→ R3 is defined by∫

V
fdV =

∫ f

e

∫ d

c

∫ b

a
f(φ)

∣∣∣∣∂φ∂u · ∂φ∂v × ∂φ

∂w

∣∣∣∣ dudvdw.
For a vector-valued function F (x, y, z), we have∫

V
F dV =

∫ f

e

∫ d

c

∫ b

a
F (φ)

∣∣∣∣∂φ∂u · ∂φ∂v × ∂φ

∂w

∣∣∣∣ dudvdw.
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Example and Exercise

Example

Let f = x+ y and F (x, y, x) = (x, y, z) and volume V be given
by φ(r, θ, z) = (r cos θ, r sin θ, z) for r ∈ [0, 1], θ ∈ [0, 2π] and
z ∈ [−1, 1]. Calculate the volume integrals

1
∫
V fdV ,

2
∫
V F dV .

Remark 3: Volume

A volume integral with φ(u, v, w) : [a, b]× [c, d]× [e, f ] −→ R3 for
V when f = 1 produces the volume of V , that is

V =

∫
V
dV.
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Summary: What we did...

Line Integrals ∫
C f ‖dr‖ and

∫
C F · dr

Surface Integrals ∫
S f ‖dS‖ and

∫
S F · dS

Volume Integrals ∫
V fdV and

∫
V F dV
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Topic 4
Integrals Theorems and Applications

Gauss’s Theorem:∫
V
∇ · F dV =

∫
∂V
F · dS.

Stokes’ Theorem∫
S
∇× F · dS =

∫
∂S
F · dr.
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Intended Learning Outcomes

By the end of this session you will be able to...

1 Learn about Stokes’ and Gauss’ Theorem.

2 Interchange relevant line, surface, and volume integrals
using the above theorems.

3 Use integral theorems to understand physical problems.
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Gauss’s (Divergence) Theorem

Theorem (Gauss (Divergence))

Let F be a continuously differentiable vector field defined in a
volume V . Let S = ∂V be the closed surface forming the
boundary of V . Then we have∫

V
∇ · F dV =

∫
∂V
F · dS.

The Gauss’s Theorem states that the total amount of expansion
of F within the volume V is equal to the flux of F out of the
surface S enclosing V .
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Example

Let F = z3k and V be a volume given by x2 + y2 + z2 ≤ 1.
Verify Gauss’s Theorem, i.e., calculate the following.

1 ∫
V
∇ · F dV

2 ∫
∂V
F · dS
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Application: Conservation of Mass for a Fluid

Consider a fluid with density ρ(r, t) flowing with velocity
u(r, t). Let V be an arbitrary volume fixed in space.

The rate of change of mass in V is equal to the rate of mass
flowing into the surface S of V

d

dt

∫
V
ρdV = −

∫
S
ρu · dS.

The above can be written as∫
V

∂ρ

∂t
dV = −

∫
S
ρu · dS.

Now use Gauss’s Theorem on the r.h.s and since V is
arbitrary we have∫

V

∂ρ

∂t
dV = −

∫
V
∇ · (ρu) dV =⇒ ∂ρ

∂t
+∇ · (ρu) = 0.
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Stokes’ Theorem

Theorem (Stokes)

Let C be a closed curve which forms the boundary of a surface S.
Let F be a continuously differentiable vector field defined on S.
Then we have ∫

S
∇× F · dS =

∫
C
F · dr.

The Stokes’ Theorem states that the total amount of curl of F
within the surface S is equal to the rotation of F on the
boundary C enclosing S.
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Example

Let F = −yi+ xj + zk and S be a surface given by x2 + y2 ≤ 1
and z = 0. Verify Stokes’s Theorem, i.e., calculate the following.

1 ∫
S
∇× F · dS

2 ∫
C
F · dr
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Application: Amperes’s Law

Let B be the magnetic field strength and J be the current
density.

Then Amperes’s Law states that∫
C
B · dr = µ0

∫
S
J · dS

for any surface S that spans the loop C for some constant of
proportionality µ0.

Now use Stokes’ Theorem on the l.h.s and since the loop was
arbitrary∫

S
∇×B · dS =

∫
S
µ0J · dS =⇒ ∇×B = µ0J .
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Summary: What we did...

Gauss’s Theorem ∫
V ∇ · F dV =

∫
∂V F · dS

Stokes’ Theorem ∫
S ∇× F · dS =

∫
∂S F · dr

Applications

Fluid Dynamics, Electromagnetism
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Topic 1
Introduction, Integers and Divisibility

Pell’s Equation
x2 −Ny2 = 1

Fermat’s Last Theorem

xn + yn = zn
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Intended Learning Outcomes

By the end of this session you will be able to...

1 Learn about integers, number theory, and its application.

2 Understand methods of proof in number theory and apply
them to solve problems.

3 Learn about and apply the division algorithm to solve
problems.

4 Prove rules governing divisibility of integers.

5 Understand and apply the Euclidean Algorithm to solve
problems relating to greatest common divisor.

6 Solve linear Diophantine equation.
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Introduction

Number Theory

Is concerned with properties of integers, prime numbers

Z = {· · · ,−3,−2,−1, 0, 1, 2, 3, · · · } ,

integer solution of equations, and integer-valued functions.

Is the second large field of mathematics and one of the
most beautiful topics of science.
In vector calculus part we were concerned with functions
and equations over R,

N ⊂ Z ⊂ Q ⊂ R ⊂ C.

We move in the number chain to N and Z.

Applications

It is fundamental in cryptography, for example every financial
transaction made, with its role in public-key cryptosystem.
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History

Pythagoreans 569 B.C. Pythagorean triples, irrationality
of
√

2.

Numbers rule the universe.

Euclid 300 B.C. Euclidean algorithm and prime
factorisation.

Diophantus 250 A.D. Equations for which integers
solutions are sought.

Fibonacci 1180, Fibonacci sequence.

Pierre de Fermat 1601, Fermat’s theorems.

Leonard Euler 1601, Euler’s φ function.

John Wilson 1741, Wilson’s Theorem.

Carl Friedrich Gauss 1777, Disquisitiones Arithmeticae.

Helene (Hel) Braun 1914, Andrew Wiles 1953...
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Methods of Number Theory

Observe properties of integers and construct proofs,
rational arguments, for why these properties exist.

There are many methods of proof:

Direct
Mathematical induction
Contradiction
Contraposition
Construction
Exhaustion
Nonconstructive
Probabilistic, etc...

The work flow of number theory is to observe a pattern,
play with some examples to understand the phenomena,
and create a proof.
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Methods of Proof

Direct Proof

The conclusion is established by logically combining the
axioms.

Example

For example, prove if n is odd, then n2 is odd.

Proof by Contradiction

It is shown that if some statement is assumed true, a logical
contradiction occurs, hence the statement must be false.

Example

For example, prove
√

2 is irrational.
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Integers

We work with

Z = {· · · ,−3,−2,−1, 0, 1, 2, 3, · · · }

We call integers of the form n = 2k are called even and
integers of the form n = 2k + 1 are called odd.
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Well-Ordering Principle and Archimedes Property

One of the principle governing integers is the well-ordering,
which plays an important role in may proofs.

Well-Ordering Principle (WOP)

Every nonempty set S of nonnegative integers contains a least
element; that is, there is some integer a in S such that a ≤ b for
all b’s belonging to S.

For example, a consequence of this principle is the following.

Theorem (Archimedes Property)

If a and b are any positive integers, then there exists a positive
integer n such that na ≥ b.

Proof.

Sketch. Proof by contradiction. Assume no such n exists.
Consider the set S = {b− na | n > 0}. It has a least element by
WOP. But you can find a smaller element.
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Mathematical Induction

Theorem (Mathematical Induction)

Let S be a set of positive integers with the following properties:

(a) The integer 1 belongs to S.

(b) Whenever k is in S, the next integer k + 1 must be in S.

Then S is the set of positive integers.

Proof.

This is a consequence of WOP.

Example

For example, prove for any n > 0

1 + 2 + 22 + · · ·+ 2n−1 = 2n − 1.

Kayvan Nejabati Zenouz MATH1172
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Early Number Theory

Polygonal Numbers

The polygonal numbers, which were studied by the
Pythagoreans. The are obtained by arranging dots in
regular polygons.

For example, Each of the numbers

1 = 1, 2 = 1 + 2, 6 = 1 + 2 + 3, 10 = 1 + 2 + 3 + 4, · · ·

represents the number of dots that can be arranged evenly
in an equilateral triangle.

This led the ancient Greeks to call a number triangular if it
is the sum of consecutive integers, beginning with 1.
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Exercise 1: Triangular Numbers

Prove the following facts concerning triangular numbers.

1 A number is triangular if and only if it is of the form

n(n+ 1)

2

for some n > 0. (Pythagoras, circa 550 B.C.)

2 The integer n is a triangular number if and only if 8n+ 1 is
a perfect square. (Plutarch, circa 100 A.D.)

3 The sum of any two consecutive triangular numbers is a
perfect square. (Nicomachus, circa 100 A.D.)

4 If n is a triangular number, then so are 9n+ 1, 25n+ 3, and
49n+ 6. (Euler, 1775)
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The Division Algorithm

Theorem (Division Algorithm)

Given integers a and b, with b > 0, there exists unique q and r
satisfying

a = qb+ r, 0 ≤ r < b.

Proof.

Sketch. Consider the set S = {a− xb | x ∈ Z, a− xb ≥ 0}. Show
it is non-empty. Then by WOP it has a smallest element, say r
for which there exists a q with a− xb = r. Argue r < b by
contradiction. Show r and q are unique.

Example

For example if a = 13 and b = 5 we have 12 = 2× 5 + 3, i.e.,
q = 2 and r = 3. Find r and q for a = 131 and b = 6.
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Exercise 2: Consequence of Division Algorithm

Proposition

Square of any odd integer is of the form 8k + 1.

Proof.

Let n be any integer. As a consequence of division algorithm we
can write n = 4k + r for unique integers 0 ≤ r < 4 and k. Now if
n is odd, we must have r = 1, 3. Now squaring n, we have

n2 = 16k2 + 8r + r2.

If r = 1, we have
n2 = 8

(
2k2 + 1

)
+ 1,

and if r = 3, we have

n2 = 16k2 + 8r + 9 = 8
(
2k2 + 3 + 1

)
+ 1.
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Divisibility

Definition (Divisibility)

An integer b is said to be divisible by an integer a 6= 0, in
symbols a | b, if there exists some integer c such that b = ac. We
write a - b to indicate that b is not divisible by a.

Example

We have that 2 | 4 because 4 = 2× 2 or −3 | 12 because
12 = 4×−3, but 5 - 7.
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Consequences

Theorem

For integers a, b, c, the following hold.

1 a | 0, 1 | a, and a | a.

2 a | 1 if and only if a = ±1.

3 If a | b and c | d, then ac | bd.

4 If a | b and b | c, then a | c.
5 If a | b and b | a, then a = ±b.
6 If a | b and b 6= 0, then |a| ≤ |b|.
7 If a | b and a | c, then a | (bx+ cy) for any two integers x

and y.
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Greatest Common Divisor

Definition (Greatest Common Divisor)

Let a and b be given integers, with at least one of them different
from zero. The greatest common divisor of a and b, denoted by
gcd(a, b), is the positive integer d satisfying the following.

1 d | a and d | b.
2 If c | a and c | b, then c ≤ d.

Example

The greatest common divisor of −12 and 30 is 6.

Exercise 3: Greatest Common Divisor

Find gcd(8, 17), gcd(−8, 36), gcd(252, 98).
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Greatest Common Divisor as Linear Combination

The following is an important and useful result.

Theorem

Given integers a and b, not both of which are zero, there exist
integers x and y such that

gcd(a, b) = ax+ by.

Example

We have gcd(8, 17) = −2× 8 + 1× 17.

Remark 1: Algorithm for gcd

We will soon see an algorithm on how to compute gcd(a, b) and
x, y such that gcd(a, b) = ax+ by.
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Relatively Prime Integers

Definition (Relatively Prime Integers)

Two integers a and b, not both of which are zero, are said to be
relatively prime whenever gcd(a, b) = 1.

Example

We have gcd(8, 17) = 1, so 8 and 17 are relatively prime.

Theorem

Let a and b be integers, not both zero. Then a and b are
relatively prime if and only if there exist integers x and y such
that 1 = ax+ by.

Corollary

If d = gcd(a, b), then gcd(ad ,
b
d) = 1.

If a | c and b | c, with gcd(a, b) = 1, then ab | c.
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Euclid’s lemma

Theorem (Euclid’s lemma)

If a | bc, with gcd(a, b) = 1, then a | c.

Proof.

Let a, b, and c be integers and suppose a | bc and gcd(a, b) = 1.
By theorem on slide 55 we can find x and y so that

1 = ax+ by.

Multiplying both sides by c we have

c = acx+ bcy,

since a | bc, we have that bc = am for some integer m, so

c = a (cx+my) ,

which implies that a | c as required.

Kayvan Nejabati Zenouz MATH1172



115

The Euclidean Algorithm

The greatest common divisor of two integers can be
found by listing all their positive divisors and choosing the
largest one common to each.

A more efficient process, involving repeated application of
the Division Algorithm, known as Euclidean Algorithm is
usually used.
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The Euclidean Algorithm Method

The Euclidean Algorithm may be described as follows.

Let a and b be two integers whose greatest common divisor
is desired and assume a ≥ b ≥ 0.

Apply the Division Algorithm to a and b

a = q1b+ r1, 0 ≤ r1 < b.

If r1 = 0, then gcd(a, b) = b.

If r1 6= 0, Division Algorithm to b and r1

b = q2r1 + r2, 0 ≤ r2 < r1.

If r2 = 0, then gcd(a, b) = r1.

If r2 6= 0, Division Algorithm to r1 and r2

r1 = q3r2 + r3, 0 ≤ r3 < r2.

Again check if r2 6= 0, repeat the process with r2 and r3.

This generates b > r1 > r2 > · · · > rn ≥ 0. repeat the
process until first n with rn+1 = 0. Then gcd(a, b) = rn.

Kayvan Nejabati Zenouz MATH1172



117

Example and Exercise

Example

Using the Euclidean algorithm calculate the greatest common
divisor of 843 and 165. Solution. Use the Euclidean algorithm

843 = 5× 165 + 18

165 = 9× 18 + 3

18 = 3× 6 + 0.

Therefore, we have gcd(843, 165) = 3.

Exercise 4: Euclidean Algorithm

Using the Euclidean algorithm to find gcd(17, 8), gcd(36, 8),
gcd(252, 98).
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The Euclidean Algorithm

The reason the Euclidean algorithm works is as follows.

Lemma

If a and b are positive integers and a = qb+ r, then
gcd(a, b) = gcd(b, r).

Using the result of this lemma, we simply work down the
displayed system of equations, obtaining

gcd(a, b) = gcd(b, r1) = gcd(r1, r2) = · · ·
= gcd(rn−1, rn) = gcd(rn, 0) = rn
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Find x, y for gcd(a, b) = ax + by

Recall Theorem on slide 51 mentioned that given integers a and
b, not both of which are zero, there exist integers x and y such
that

gcd(a, b) = ax+ by.

We can reverse the Euclidean algorithm to find x, y as follows.

Write
rn = rn−2 + qnrn−1

Use rn−1 = rn−3 − qn−1rn−2 to get

rn = rn−2 + qn (rn−3 − qn−1rn−2)
= rn−2 (1− qnqn−1) + qnrn−3

Write rn−2 = rn−4 − qn−2rn−3 and continue to arrive at a
and b.
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Example and Exercise

Example

Find integers x and y so that gcd(165, 843) = 165x+ 843y.
Solution. Now working backwards we have

3 = 165− 9× 18

= 165− 9× (843− 5× 165)

= 46× 165− 9× 843

so we have
3 = 46× 165− 9× 843,

i.e., x = 46 and y = −9.

Exercise 5: Extended Euclidean Algorithm

Find integers x and y so that gcd(6, 152) = 6x+ 152y.
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The Diophantine Equation ax + by = c

Diophantine equation refers to any equation in one or
more unknowns that is to be solved in the integers.

The simplest type of Diophantine equation is

ax+ by = c

where a, b, c are given integers and a and b are not both zero.

A solution of this equation is a pair of integers x0, y0 that,
when substituted into the equation, satisfy it; that is, we ask
that ax0 + by0 = c.

We can have several solutions. For example, given
3x+ 6y = 18 we have

3× 4 + 6× 1 = 18.

3×−6 + 6× 8 = 18.
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The Diophantine Equation ax + by = c Solutions

Theorem

The linear Diophantine equation ax+ by = c has a solution if
and only if d | c, where d = gcd(a, b). If x0, y0 is any particular
solution of this equation, then all other solutions are given by

x = x0 +
b

d
t, y = y0 −

a

d
t,

where t is an arbitrary integer.
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Example

Find all integer solutions to the equation 5x+ 22y = 18.
Solution. Note the equation has a solution if and only if
gcd(5, 22) = 1 divides 18, which is the case. Apply the extended
Euclidean algorithm to gcd(5, 22). First we have

22 = 4× 5 + 2

5 = 2× 2 + 1, so

1 = 5− 2× 2

= 5− 2× (22− 4× 5)

= 9× 5− 2× 22,

therefore, we have 1 = 9× 5− 2× 22. Now multiplying both sides
by 18, we have 18 = 18× 9× 5− 18× 2× 22 and we have that

x0 = 18× 9 = 162, y0 = −18× 2 = −36

i.e., 5× 162− 22× 36 = 18. All other solutions are given by

x = x0 + 22t = 162 + 22t, y = y0 − 5t = −36− 5t for t ∈ Z.
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Exercise 6: Diophantine Equation

Find solutions of the linear Diophantine equation

172x+ 20y = 1000.
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Summary: What we did...

Number Theory

Integers, integer-valued functions, appli-
cationsMethods of Proof

Direct, Induction, Contradiction, WOP
Divisibility

Rules, gcd, relatively primes
Euclidean Algorithm

Diophantine equation
Next Time

Primes and unique factorisation
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Intended Learning Outcomes

By the end of this session you will be able to...

1 Learn about prime numbers and their properties.

2 Understand the Fundamental Theorem of Arithmetic.

3 Determine if a number is prime and factorise integers.

4 Prove theorems about the distribution of primes.

5 Learn about unsolved problems relating to distribution of
primes.
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Prime Numbers

In the previous topic we learnt that for any two integers a
and b 6= 0, we can find unique q and r such that

a = bq + r, 0 ≤ r < b.

For the when r = 0, we say that b divides a and write b | a.

We looked at common divisor of two integers a and b.

Now we focus on integers which have only two divisor.

Definition (Prime Number)

An integer p > 1 is called a prime number, or simply a prime,
if its only positive divisors are 1 and p. An integer greater than 1
that is not a prime is termed composite.

Example

The integers 2, 3, 5, 7 are prime and 1, 4, 6, 8, 9 are composite.

Kayvan Nejabati Zenouz MATH1172



130

Applications

It turns out every number a > 1 is either a prime or, by the
Fundamental Theorem, can be broken down into unique
prime factors and no further

The primes serve as the building blocks from which all other
integers can be made.

The distribution of primes remains unknown for example see
Riemann-Hypothesis.

We will first proceed to show that every number can be
written as a product of primes

Kayvan Nejabati Zenouz MATH1172
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Towards Fundamental Theorem of Arithmetic I

Theorem

If p is a prime and p | ab, then p | a or p | b.

Proof.

Sketch. Use Euclid’s Lemma.

Corollary 1

If p is a prime and p | a1a2 · · · an, then p | ak for some k, where
1 ≤ k ≤ n.

Proof.

Exercise. Use Induction and theorem above.
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Towards Fundamental Theorem of Arithmetic II

Corollary 2

If p, q1q2 · · · qn are a prime numbers and p | q1q2 · · · qn, then
p = qk for some k, where 1 ≤ k ≤ n.

Proof.

Exercise. Use Corollary 1.
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Fundamental Theorem of Arithmetic

Theorem (Fundamental Theorem of Arithmetic)

Every positive integer n > 1 is either a prime or a product of
primes; this representation is unique, apart from the order in
which the factors occur.

Proof.

Sketch. Steps:

1 n is either prime or composite. If prime done.

2 If n composite, choose d, smallest divisor of n, it must be
prime d = p1.

3 Write n = p1n1 and find divisors of n1 < n.

4 Repeat until n = p1p2 · · · pr, is a product of primes.

5 To establish uniqueness, assume n = p1p2 · · · pr = q1q2 · · · qs,
and show pi and qj coincide and r = s.
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Unique Factorisation

Corollary

Any positive integer n > 1 can be written uniquely in a canonical
form

n = pk1
1 p

k2
2 · · · p

kr

r

where, for i = 1, 2, ..., r, each ki is a positive integer and each pi
is a prime, with p1 < p2 < · · · < pr·

Exercise 1: Factorisation

Factorise the following numbers.

360, 17460, 18527
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Greatest Common Divisor

Remark 1: Finding gcd

Note using the prime factorisations of two numbers, it is easy to
find the greatest common divisors of two integers a and b. If

a = pk1
1 p

k2
2 · · · p

kr
r and b = pl11 p

l2
2 · · · p

lr
r ,

where ki and lj can be zero, then

gcd(a, b) = p
min(k1,l1)
1 p

min(k2,l2)
2 · · · pmin(kr,lr)

r .

Exercise 2: Finding gcd

Find gcd(4725, 17460) using the prime factorisations of 4725 and
17460.
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Primality Testing

Given a particular integer, how can we determine whether it
is prime or composite?

Approach by successively dividing the integer in question by
each of the numbers preceding it.

Not practical: for even if one is undaunted by large
calculations, the amount of time and work involved may be
prohibitive.

Lemma

If n > 1 is a composite integer, then n possess a divisor less than
or equal to

√
n.

In testing the primality of an integer n > 1, it therefore
suffices to divide a by those primes not exceeding

√
n.

Example

Check the primality of 509.
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The Sieve of Eratosthenes

Eratosthenes of Cyrene (276-194 B.C.), known as ”Beta”
because, it was said, he stood at least second in every field.

Recall if an integer a > 1 is not divisible by any prime
p <
√
a, then a is of necessity a prime.

Eratosthenes used this fact as the basis of a clever
technique, called the Sieve of Eratosthenes, for finding all
primes below a given integer n.

Write down the integers from 2 to n in their natural order.

Systematically eliminating all the composite numbers by
striking out all multiples 2p, 3p, 4p, 5p, ... of the primes
p <
√
n.

The integers that are left on the list, those that do not fall
through the ”sieve”, are primes.
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Distribution of Primes

Theorem (Euclid)

There is an infinite number of primes.

Proof.

Proceed by contradiction. Suppose there are finitely many
primes p1 = 2, p2 = 3, ..., pn arranged in ascending order.

Consider the number P = p1p2 · · · pn + 1.

Now since P > 1, by Fundamental Theorem of Arithmetic,
P is either prime or product of primes, i.e., P is divisible by
some prime p.

Since p1 = 2, p2 = 3, ..., pn, we must have that p = pi for
some i = 1, ..., n.

But this implies that p | P − p1p2 · · · pn, i.e., p | 1 and since
p > 1, this leads to a contradiction, thus the assumption
that the list of primes is finite is incorrect.
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Size of Primes

Lemma

Let pn be denote the nth of the prime numbers in their natural
order. Then

pn+1 ≤ p1p2 · · · pn + 1.

Proof.

Consider a divisor p of p1p2 · · · pn + 1. Then p 6= pi for i = 1, ..., n,
so possibilities are p = pn+1, pn+2, ...., i.e., p ≥ pn+1.

Theorem

If pn is the nth of the prime, then pn ≤ 22
n−1

.

Proof.

By induction on n and using Lemma.

Corollary

For n ≥ 1 there are at least n+ 1 primes less than 22
n−1

.
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More on Distribution of Primes

The distribution of primes within the positive integers is
most mystifying.

It is an unanswered question whether there are infinitely
many pairs of twin primes; that is, pairs of successive odd
integers p and p+ 2 that are both primes.

Electronic computers have discovered 152891 pairs of twin
primes less than 30000000.

The largest twins to date, each 100355 digits long,

65516468355× 2333333 ± 1

were discovered in 2009.

Primes can be far apart; that is, arbitrarily large gaps can
occur between consecutive primes.

Given any positive integer n, there exist n consecutive
integers, all of which are composite.
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Goldbach’s Conjecture

Conjecture (1742, Christian Goldbach)

Every even integer greater than 4 can be expressed as the sum of
two primes.

One of the oldest and best-known unsolved problems in
number theory and all of mathematics.

Some progress was made after 200 years by Hardy and
Littlewood in 1922.

Every even integer from some point on is the sum of either
two or four primes.

Thus, it is enough to answer the question for every odd
integer n in the range 9 < n < 101346, but 101346 is too
large for computers to handle.
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Primes in Arithmetic Progression

Recall according to the Division Algorithm, every
positive integer can be written uniquely in one of the forms

4n, 4n+ 1, 4n+ 2, 4n+ 3.

Therefore, every odd prime is of the form 4n+ 1, for
example 5, 13, or 4n+ 3 for example 7, 11.

In 1853, Tchebycheff thought there are more primes of the
form 4n+ 3 than 4n+ 1.

However, in 1914, J. E. Littlewood showed that the
inequality fails infinitely often.
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Primes of the Form 4n + 3

Lemma

The product of two or more integers of the form 4n+ 1 is of the
same form.

Theorem

There are an infinite number of primes of the form 4n+ 3.

Proof.

Sketch. Proof by contradiction using similar ideas to proving
there are infinitely many primes and the lemma above.

Theorem (Dirichlet 1837)

If a and b are relatively prime positive integers, then the
arithmetic progression a, a+ b, a+ 2b, a+ 3b, ... contains infinitely
many primes.

Proof.

Too difficult!
Kayvan Nejabati Zenouz MATH1172
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Summary: What we did...

Prime Numbers

Definition, Fundamental Theorem of
ArithmeticPrimality Testing

The Sieve of Eratosthenes
Distribution of Primes

Euclid’s Theorem, Twin Primes, Gold-
bach’s ConjectureArithmetic Progression

Pirmes of the form 4n + 3, Dirichlet’
TheoremNext Time

The Theory of Congruences
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The Theory of Congruences

x ≡ a1 mod n1,

x ≡ a2 mod n2,

...

x ≡ ar mod nr.
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Intended Learning Outcomes

By the end of this session you will be able to...

1 Learn about congruences and their properties.

2 Construct proofs for divisibility of numbers using
congruences.

3 Solve linear congruences equations.

4 Understand the Chinese Remainder Theorem
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Introduction

Recall that for any integer a and b 6= 0, we can find unique
q and r such that

a = bq + r, 0 ≤ r < b.

The Theory of Congruences is concerned with arithmetic
of remainders.
i.e., fixing a number n and considering the remainder of
integers upon division by n.
First introduced by the German mathematician Carl
Friedrich Gauss (1777-1855) in his Disquisitiones
Arithmeticae
It is the foundation of many later developments in pure
mathematics.

”It is really astonishing,” said Kronecker, ”to think that a
single man of such young years was able to bring to light
such a wealth of results, and above all to present such a

profound and well-organized treatment of an entirely new
discipline”.
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Basic Properties of Congruences I

Definition (Congruent Modulo n)

Let n be a fixed positive integer. Two integers a and b are said
to be congruent modulo n, symbolized by

a ≡ b mod n,

if n divides the difference a− b; that is a− b = kn for some
integer k.

Example

For n = 7 we have

3 ≡ 24 mod 7, −31 ≡ 11 mod 7, −15 ≡ −64 mod 7.

For n = 10, we have

11 ≡ 1 mod 10, 5 6≡ 4 mod 10.
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Basic Properties of Congruences II

Let us fix n. Now for any integer a we can write
a = qn+ r for a unique integer 0 ≤ r < n, i.e., a− r = qn.

This implies that any integer is congruent to a unique
number 0 ≤ r < n modulo n, i.e.,

a ≡ r mod n.

we see that every integer is congruent modulo n to exactly
one of the values 0, 1, 2, ..., n− 1.

In particular, a ≡ 0 mod n if and only if n | a.

The set of integers 0, 1, 2, ..., n− 1 is called the set of least
nonnegative residues modulo n.

Congruence may be viewed as a generalized form of
equality: its behaviour with respect to addition and
multiplication is reminiscent of ordinary equality.
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Characterization of Congruence

Theorem

For arbitrary integers a and b, a ≡ b mod n if and only if a and
b leave the same nonnegative remainder when divided by n.

Proof.

Exercise.
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Properties of Congruences

Theorem

Let n > 1 be fixed and a, b, c, d be arbitrary integers. Then the
following properties hold.

Equivalence Relation
1. a ≡ a mod n
2. If a ≡ b mod n, then b ≡ a mod n
3. If a ≡ b mod n and b ≡ c mod n, then a ≡ c mod n

Operation Axioms
4. If a ≡ b mod n and c ≡ d mod n, then a+ c ≡ b+ d mod n
5. If a ≡ b mod n and c ≡ d mod n, then ac ≡ bd mod n
6. If a ≡ b mod n, then a+ c ≡ b+ c mod n and ac = bc mod n

7. If a ≡ b mod n then ak ≡ bk mod n

Remark 1: Algebraic Ring

The set of residues modulo n form an algebraic object known as
a ring denoted by (Z/nZ,+, ·). That is Z/nZ is a set with
operations + and · such that (Z/nZ,+) is an abelian group,
multiplication is associative and distributes over addition, and
there exists a multiplicative identity 1 mod n.
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Example and Exercise

Example

Prove 321 + 1 is divisible by 7.
Solution. Note we have 32 = 9 ≡ 2 mod 7, so

321 = 3×
(
32
)10 ≡ 3× 210 mod 7.

Now 23 = 8 ≡ 1 mod 7, so

3× 210 = 3× 2×
(
23
)3 ≡ 6× 13 ≡ −1 mod 7,

therefore we have
321 ≡ −1 mod 7,

i.e, 321 + 1 ≡ 0 mod 7.

Exercise 1: Congruences

Find the residue of 320 modulo 41.
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Cancellation Rule

Note if a ≡ b mod n, then ac ≡ bc mod n for any c.
However, the converse is not always true, i.e, if ac ≡ bc
mod n, then we cannot always say a ≡ b.
For example, 2× 4 ≡ 2× 1 mod 6, but 4 6≡ 1 mod 6.

Theorem (Cancellation Rule)

If ca ≡ cb mod n, then a ≡ b mod n/d, where d = gcd(c, n).

Proof.

If ca ≡ cb mod n, then c(a− b) = kn for some k. Let
d = gcd(c, n). Then c = dr andn = ds for r, s relatively prime.
We have dr(a− b) = kds, thus by Euclid’s lemma s | (a− b).

Corollaries

1 If ca ≡ cb mod n and gcd(c, n) = 1, then a ≡ b mod n.

2 If ca ≡ cb mod p and p - c, then a ≡ b mod p, where p is a prime
number.
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Application: Representations of Integers

One application of congruence theory involves finding
special criteria under which a given integer is divisible by
another integer.

Given an integer b > 1, any positive integer N can be
written uniquely in terms of powers of b as

N = amb
m + am−1b

m−1 + · · ·+ a2b
2 + a1b+ a0,

with 0 ≤ ak ≤ b− 1.

This also may be replaced by the simpler symbol

N = (amam−1 · · · a2a1a0)b .

Theorem

A number N = (amam−1 · · · a2a1a0)10 is divisible by 11 if and
only if the alternating sum of its digits is divisible by 11, i.e,

(−1)mam + (−1)m−1am−1 · · ·+ a2 − a1 + a0 ≡ 0 mod 11.
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Linear Congruences

Linear Congruences are concerned with solving linear
equations modulo n.

That given a, b, n find x so that

ax ≡ b mod n.

For example, consider the equation 3x ≡ 9 mod 12.

Note, if x0 is a solution, then it means that we have

n | ax0 − b =⇒ ax0 − b = ny for some y.

Now this is a Diophantine equation

ax− ny = b,

which we know has a solution if and only if gcd(a, n) | b.
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Linear Congruences Solutions

Theorem

The linear congruence ax ≡ b mod n has a solution if and only
if d | b, where d = gcd(a, n). If d | b, then it has d mutually
incongruent solutions modulo n given by

x0, x0 +
n

d
, x0 +

2n

d
, ...., x0 +

(d− 1)n

d
.

Corollary

If gcd(a, n) = 1, then the linear congruence ax ≡ b mod n has a
unique solution modulo n.

Remark 2: Multiplicative Inverse

Given relatively prime integers a and n, the congruence ax ≡ 1
mod n has a unique solution. This solution is sometimes called
the (multiplicative) inverse of a modulo n.
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Example and Exercise

Example

Solve the congruence equation 18x ≡ 30 mod 42.
Solution. Note, gcd(18, 42) = 6 divides 30, so we have 6
solutions. Now 42 = 2× 18 + 6, so multiplying both side by −5
we have

−5× 42 = −10× 18− 30,

i.e, 18×−10 ≡ 18× (42− 10) ≡ 30 mod 42., other solutions are
given by

32 + t

(
42

6

)
= 32 + 7t mod 42, for t = 0, 1, ..., 5.

Exercise 2: Multiplicative Inverse

Find the multiplicative inverse of 3 modulo 10.
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Simultaneous Linear Congruences

The Chinese Remainder Theorem is concerned with solving
simultaneous linear congruences

a1x ≡ b1 mod m1, a2x ≡ b2 mod m2, ..., arx ≡ br mod mr.

We shall assume that the moduli mk are relatively prime in
pairs.

The system will admit no solution unless each individual
congruence is solvable.

The solutions of the individual congruences assume the form

x ≡ c1 mod m1, x ≡ c2 mod m2, ..., x ≡ cr mod mr.
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Chinese Remainder Theorem

Theorem (Chinese Remainder Theorem)

Let n1, n2, ..., nr be positive integers such that gcd(ni, nj) = i for
i 6= j. Then the system of linear congruences

x ≡ a1 mod n1,

x ≡ a2 mod n2,

...

x ≡ ar mod nr.

has a simultaneous solution, which is unique modulo the integer
n1n2 · · ·nr.

Proof.

Sketch. Let n = n1n2 · · ·nr and Nk = n
nk

. Fine solution xk for
Nkx ≡ 1 mod nk for each k = 1, ..., r. Prove that
x̃ = a1N1x1 + · · ·+ akNkxk is a simultaneous solution.
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Example and Exercise

Example

The problem posed by Sun-Tsu corresponds to the system of
three congruences

x ≡ 2 mod 3,

x ≡ 3 mod 5,

x ≡ 2 mod 7.

Find a solution.

Exercise 3: Simultaneous Linear Congruences

Solve the linear congruence

17x ≡ 9 mod 276.
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Congruences in Two Variables

Theorem

The system of linear congruences

ax+ by = r mod n

cx+ dy = s mod n

has a unique solution modulo n whenever gcd(ad− bc, n) = 1.

Example

Solve the system of equations

7x+ 3y = 10 mod 16

2x+ 5y = 9 mod 16
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Summary: What we did...

Congruences

Definition, Properties
Applications

Cancellation Rule, Representations of
IntegersLinear Congruences

Multiplicative Inverse
Simultaneous Linear Congruences

Chinese Remainder Theorem
Next Time

Fermat’s and Wilson’s Theorems and
Number Theoretic Functions
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Fermat’s, Wilson’s Theorems,

and Number Theoretic Functions

ap ≡ a mod p,

(p− 1)! ≡ −1 mod p

aφ(n)+1 ≡ a mod n.
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Intended Learning Outcomes

By the end of this session you will be able to...

1 Learn about Fermat’s and Wilson’s theorems.

2 Understand number theoretic functions.
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Introduction

Pierre de Fermat (1601-1665) the ”Prince of Amateurs,” was
the last great mathematician to pursue the subject as a
sideline to a nonscientific career.

By profession a lawyer and magistrate attached to the
provincial parliament at Toulouse

He sought refuge from controversy in the abstraction of
mathematics.

Fermat evidently had no particular mathematical training
and he evidenced no interest in its study until he was past
30.

To him, it was merely a hobby to be cultivated in leisure
time.

Fermat preferred the pleasure he derived from mathematical
research itself to any reputation that it might bring him.
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Fermat’s Little Theorem

Fermat’s little theorem is an striking and simple statement
for it say if p is a prime and a and integer with p - a, then
p | ap−1 − 1. Try 14, 24, 34, 44 upon division by 5.
Recall in the previous lecture for n a fixed positive integer
we wrote

a ≡ b mod n

if n divides the difference a− b.
Theorem (Fermat’s Little Theorem)

Let p be a prime and suppose that p - a. Then

ap−1 ≡ 1 mod p.

Proof.

Sketch. The numbers a, 2a, ..., (p− 1)a, are nonzero, not
congruent to each other, and are congruent to 1, ..., p− 1 modulo
p is some order. Take their product.
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Applications

Corollary

If p is a prime, then ap ≡ a mod p for any integer a.

Example

Compute 538 mod 11.
Solution. Note by FLT we have 510 ≡ 1 mod 11. Now
38 = 3× 10 + 8, so we have

538 = 53×10+8 = (510)358

≡ 58 mod 11 = 254 mod 11 ≡ 34 mod 11

≡ 4 mod 11.

Exercise 1: Fermat’s Little Theorem

Compute 232004 mod 17.
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Primality Testing

Another use of Fermat’s theorem is as a tool in testing the
primality of a given integer n.

If it could be shown that the congruence an ≡ a mod n fails
to hold for some choice of a, then n is necessarily composite.

For example test primality of 117, with say 2. We have
2116 = 216×7+4 and 27 = 128 ≡ 11 mod 117, so

2116 ≡ 1116 + 24 mod 117,

now we have 112 = 121 ≡ 4 mod 117, so

2116 ≡ 1116 + 24 ≡ 4824 ≡ 220 ≡ 11226 ≡ 210 ≡ 44 mod 117.

Therefore we have

2116 ≡ 44 6≡ 1 mod 117,

which implies that 117 is not prime, indeed 117 = 13× 9!
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Converse of Fermat’s

Note the converse of Fermat’s theorem may fail, in other
words, if an−1 = 1 mod n for some integer a, then n need
not be prime.

The following interesting lemma gives us some ideas about
when the converse of Fermat’s theorem fails.

Lemma

If p and q are distinct primes with ap ≡ a mod q and aq ≡ a
mod p, then apq ≡ a mod pq.

Proof.

Note if ap ≡ a mod q, then (ap)q ≡ aq ≡ a mod q, so apq ≡ a
mod q, similarly we have apq ≡ a mod p. Now this implies that
apq − a = kq and apq − a = sp, since p 6= q, we have that p | k, so
apq − a = rpq, thus apq ≡ a mod pq.
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Example and Pseudoprimes

Example

Show that 2340 ≡ 1 mod 341. Note 341 = 11× 31.

A composite integer n is called a pseudoprime whenever
n | 2n − 2.

It can be shown that there are infinitely many such
pseudoprimes, the smallest four being 341, 561, 645, 1105.

Theorem

If n is an odd pseudoprime, then Mn = 2n − 1 is a larger one.

Proof.

Sketch. Show Mn is composite. Note we have n | 2n − 2, so
2n − 2 = kn, now 2Mn−1 = 22

n−2 = 2kn, and check 2kn − 1 ≡ 0
mod Mn.
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Wilson’s Theorem

Another important development of number theory is the
Wilson’s theorem.

If p is a prime number, then p divides (p− 1)! + 1.

Wilson appears to have guessed this on the basis of
numerical computations!

Theorems was hard to prove 1770 because of the absence of
a notation to express prime numbers.

Theorem (Wilson’s Theorem (Proved by Lagrange))

If p is a prime, then (p− 1)! ≡ −1 mod p. The converse of
Wilson’s theorem is also true.
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Applications

We can use Wilson’s theorem to the study quadratic
congruences.

It is understood that quadratic congruence means a
congruence of the form

ax2 + bx+ c = 0 mod n

with a 6≡ 0 mod n.

Theorem

The quadratic congruence x2 + 1 ≡ 0 mod p, where p is an odd
prime, has a solution if and only if p ≡ 1 mod 4.
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Number Theoretic Functions

Certain functions are found to be of special importance in
connection with the study of the divisors of an integer.

Any function whose domain of definition is the set of
positive integers is said to be a number-theoretic, that is

f : Z≥0 −→ C.

Although the value of a number-theoretic function is not
required to be a positive integer or, for that matter, even an
integer.

Example

Given a positive integer n, let τ(n) denote the number of positive
divisors of n and σ(n) denote the sum of these divisors.
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Multiplicative Property

Definition (Multiplicative Functions)

A number-theoretic function f is said to be multiplicative if
f(mn) = f(m)f(n) whenever gcd(m,n) = 1.

Many of the number theoretic functions we will come across
have the multiplicative property.

Note given the definition above, for a multiplicative function
f if n = pk1

1 p
k2
2 · · · pkrr for distinct primes pi, then we must

have
f(n) = f

(
pk1
1

)
f
(
pk2
2

)
f
(
pkrr

)
.

Also suppose there exist n with f(n) 6= 0, then
f(n) = f(n · 1) = f(n)f(1), which implies that f(1) = 1.

Theorem

Let f be a multiplicative function. Define F by F (n)
∑

d|n f(d)
Then F is multiplicative.
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Euler’s phi-function

A century after Fermat a first-class mathematician,
Leonhard Euler (1707-1783) appreciated the significance of
number theory.

Many of the theorems announced without proof by Fermat
yielded to Euler’s skill.

Euler’s phi-function has vast application both in number
theory and in cryptography.

Definition (Euler’s phi-function)

For n ≥ 1, let φ(n) denote the number of positive integers not
exceeding n that are relatively prime to n.

Example

For n = 8, we have the numbers which are relatively prime to n
are 1, 3, 5, 7, so φ(n) = 4. For a p we have φ(p) = p− 1. In fact
φ(pk) = pk − pk−1.

Kayvan Nejabati Zenouz MATH1172



178

Multiplicative Functions

Theorem

Let n be a positive integer τ(n) the number of positive divisors,
σ(n) the sum of these divisors, and φ(n) the Euler’s phi-function
of n. Suppose n = pk1

1 p
k2
2 · · · pkrr . Then we have

τ(n) = (k1 + 1) (k2 + 1) · · · (kr + 1) , (1)

σ(n) =

(
pk1+1
1 − 1

p1 − 1

)(
pk2+1
2 − 1

p2 − 1

)
· · ·
(
pkr+1
r − 1

pr − 1

)
, (2)

φ(n) =
(
pk1
1 − p

k1−1
1

)(
pk2
2 − p

k2−1
2

)
· · ·
(
pkrr − pkr−1r

)
, (3)

in particular all the above functions are multiplicative.

Theorem (Euler’s Generalization of Fermat’s Theorem)

If n ≥ 1 and gcd(a, n) = 1, then aφ(n) ≡ 1 mod n.
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Applications to RSA (cryptosystem)

RSA (Rivest–Shamir–Adleman) is one of the first public-key
cryptosystems and is widely used for secure data
transmission.

It is based on the practical difficulty of factoring the product
of two large prime numbers, the ”factoring problem”.

It heavily relies on number theoretic functions.

Watch the video
https://www.youtube.com/watch?v=wXB-V Keiu8.
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Summary: What we did...

Fermat’s Little Theorem

Primality, Pseudoprimes
Wilson’s Theorem

Primality
Number Theoretic Functions

Euler’s phi-function, RSA
Next Time

There won’t be any (revision)!
Thanks for Your Attention!

Have a good holiday!
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See You Next Time

Please Do Not Forget To

Ask any questions now or through my contact details.

Drop me comments and feedback relating to any
aspects of the course.

Come and see me during Student Drop-in Hours:
MONDAYS 12:00-13:00 (MATHS ARCADE) AND
TUESDAYS 15:00-16:00 (QM315).
Alternatively, email to make an appointment.

Thank You!

Kayvan Nejabati Zenouz MATH1172
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